
OWL Schema Matching

Luiz André P. Paes Leme, Marco A. Casanova, Karin K. Breitman,

Antonio L. Furtado

Department of Informatics – Pontifical Catholic University of Rio de Janeiro

Rua Marquês de S. Vicente, 225 – Rio de Janeiro, RJ – Brazil CEP 22451-900

{lleme, casanova, karin, furtado}@inf.puc-rio.br

Abstract. Schema matching is a fundamental issue to many database applications, such as query

mediation and data warehousing. It becomes a challenge when different vocabularies are used to refer

to the same real-world concepts. In this context, a convenient approach, sometimes called extensional,

instance-based or semantic, is to detect how the same real world objects are represented in different

databases and to use the information thus obtained to match the schemas. Additionally, we argue that

automatic approaches of schema matching should store provenance data about matchings. This paper

describes an instance-based schema matching technique for an OWL dialect and proposes a data

model for storing provenance data. The matching technique is based on similarity functions and is

backed up by experimental results with real data downloaded from data sources found on the Web.

Keywords: schema matching, OWL, similarity, provenance.

1 Introduction

A database conceptual schema, or simply a schema, is a high level description of how database concepts

are organized. A schema matching from a source schema S into a target schema T defines concepts in T in

terms of the concepts in S.

The problem of finding schema matchings becomes a challenge when different vocabularies are used

to refer to the same real-world concepts (Casanova et al., 2007). In this case, a convenient approach,

sometimes called extensional, instance-based or semantic, is to detect how the same real-world objects

are represented in different databases and to use the information thus obtained to match the schemas. This

approach is grounded on the interpretation, traditionally accepted, that “terms have the same extension

when true of the same things” (Quine, 1968).

Moreover, in many applications, the schema matchings alone are not sufficient, it is also required to

unveil the evidences, and to reveal the methods used to get to the final alignments. We refer to such data

as the provenance data about matchings.

In this paper we address the problem of matching two schemas that belong to an expressive OWL di-

alect. We adopt an instance-based approach, assuming that a set of instances from each schema is availa-

ble.

The major contributions of this paper are four-fold. First, we decompose the problem of OWL schema

matching into the problem of vocabulary matching and the problem of concept mapping. We also intro-

duce sufficient conditions guaranteeing that a vocabulary matching induces correct concept mappings.

Second, we describe an OWL schema matching technique based on the notion of similarity. Third, we

evaluate the precision of the proposed technique using data available on the Web. Finally, we propose a

data model to store provenance data.

Several papers address schema matching. Rahm and Bernstein (2001) is an early survey of schema

matching techniques. Euzenat and Shvaiko (2007) survey ontology matching techniques. Castano et al.

(2009) describe the H-Match algorithm to dynamically match ontologies.

Bilke and Naumann (2005) describe an instance-based technique that explores similarity algorithms.

Brauner et al. (2007a) adopt the same idea to match two thesauri. Wang et al. (2004) describe a technique

to match Web databases, which uses a set of typical instances. Brauner et al. (2007b) apply this idea to

match geographical database. Brauner et al. (2008) describe a matching algorithm based on measuring the

similarity between attribute domains.

Unlike any of the above techniques, the schema matching process we propose uses similarity functions

to induce vocabulary matchings in a non-trivial way, using an expressive OWL dialect. Through a set of

examples, we also illustrate that the structure of OWL schemas may lead to incorrect concept mappings,

and indicate how to avoid such pitfalls.

This paper is organized as follows. Section 2 introduces the OWL dialect adopted and the notions of

vocabulary matching and concept mapping. Section 3 describes our technique to obtain OWL vocabulary

matchings and contains experimental results. Section 4 describes how to induce concept mappings from

vocabulary matchings. Section 5 presents a provenance data model for schema matchings. Finally, section

0 lists the conclusions and directions for future work.

2 OWL Schema Matching

2.1 OWL Extralite

We assume that the reader is familiar with basic XML concepts. In particular, recall that a resource is an-

ything identified by an URIref and that an XML namespace or a vocabulary is a set of URIrefs. A literal

is a character string that represents an XML Schema datatype value. We refer the reader to (Bechhofer

et al., 2004) for more details.

An RDF statement (or simply a statement) is a triple (s,p,o), where s is a URIref, called the subject of

the statement, p is a URIref, called the property of the statement, and o is either a URIref or a literal,

called the object of the statement; if o is a literal, then o is also called the value of property the p.

The Web Ontology Language (OWL) describes classes and properties in a way that facilitates machine

interpretation of Web content. The description of OWL is organized as three dialects: OWL Lite, OWL

DL and OWL Full.

We will define and work an OWL dialect, that we call OWL Extralite. It supports:

 named classes

 datatype and object properties

 subclasses

 individuals

 domain and range of datatype and object properties

 the domain is always a class

 the range of a datatype property is an XML schema type, whereas the range of an object

property is a class

 minCardinality and maxCardinality, with the usual meaning

 inverseFunctionalProperty, which captures simple keys (we note that only OWL Full sup-

ports the inverseFunctionalProperty for datatype properties)

Note that, OWL Extralite thus defined has the same expressiveness as UML (OMG, 2009). In the con-

text of this paper we use OWL Extralite to express database schemas since it is a convenient technology

to exchange data in the Web, as well as to manipulate database schemas.

An OWL schema (more often called an OWL ontology) is a collection of RDF triples that uses the

OWL vocabulary. A concept in an OWL schema is a class, datatype property or object property defined

in the schema. The vocabulary of the schema is the set of concepts defined in the schema (a set of URI-

refs). It is important to note that, unlike UML, the scope of a property name is global to the OWL Extra-

lite schema.

A triple of the form (s,rdf:type,c) indicates that s is an instance of a class c; a triple of the

form (s,p,v) indicates that s has a datatype property p with value v; and a triple of the form

(s,p,o) indicates that s and o are related by an object property p.

In the rest of the paper, we refer to OWL Extralite schemas simply as schema. Figure 1 and Figure 2

show schemas for fragments of the Amazon and the eBay databases, using a shorthand notation to save

space and improve readability. Consistently with XML usage, from this point on, we will use the names-

pace prefixes am: and eb: to refer to the vocabularies of the Amazon and the eBay schemas respective-

ly, and qualified names of the form V:T to indicate that T is a term of the vocabulary V.

In Figure 1, for example, am:title is defined as a datatype property with domain am:Product

and range string (an XML Schema data type), am:Book is declared as a subclass of am:Product,

and am:publisher is defined as an object property with domain am:Book and range am:Publ. Note

that the scope of am:title and am:publisher is the schema, and not the classes defined as their

domains.

Furthermore, although not indicated in Figure 1, we assume that all properties, except am:author,

have maxCardinality equal to 1, and that am:isbn is inverse functional. This means that all properties

are single-valued, except am:author, which is multi-valued, and that am:isbn is a key of am:Book.

Likewise, although not shown in Figure 2, all properties, except eb:author, have maxCardinality

equal to 1, and eb:isbn-10 and eb:isbn-13 are inverse functional.

2.2 Vocabulary Matching and Concept Mapping

We decompose the problem of schema matching into the problem of vocabulary matching and the prob-

lem of concept mapping. In this section, we introduce both notions with the help of examples.

In what follows, let S and T be two schemas, and VS and VT be their vocabularies, respectively. Let CS

and CT be the sets of classes and PS and PT be the sets of datatype or object properties in VS and VT, re-

spectively.

A contextualized vocabulary matching between S and T is a finite set of quadruples (v1,e1,v2,e2) such

that

 if (v1,v2)CSCT, then e1 and e2 are the top class T

 if (v1,v2)PSPT, then e1 and e2 are classes in CS and CT that must be subclasses of the domains, or

the domains themselves, of properties v1 and v2, respectively

If (v1,e1,v2,e2), we say that  matches v1 with v2 in the context of e1 and e2, that ei is the context of vi

and that (ei,vi) is a contextualized concept, for i=1,2. A contextualized property (or class) matching is a

matching defined only for properties (or classes).

Intuitively, a vocabulary matching expresses equivalences between properties and classes in a given

context. The context of a property P in a vocabulary matching is an RDF class that specifies the

rdf:type of subjects of existing triples of the form (?subject P ?object) for which the match-

ings holds. The context of a class is always the top class T (i.e., this notion is not used for class match-

ings). Note that, if the database instances follows the schema the class of the ?subject must be either

Product

 title range string

 listPrice range decimal

 currency range string

Book is-a Product

 author range string

 edition range integer

 isbn range string

 ean range string

 detailPageURL range anyURI

 publisher range Publ

Publ

 name range string

 address range string

Music is-a Product

Video is-a Product

PCHardware is-a Product

 Seller

 name range string

 redistrationDate range dateTime

 offers range Offer

Offer

 quantity range integer

 startPrice range double

 currency range string

 seller range Seller

 product range Product

Product

 title range string

 condition range string

 returnPolicyDetails range string

 offers range Offer

Book is-a Product

 author range string

 edition range integer

 publicationYear range integer

 isbn-10 range integer

 isbn-13 range integer

 publisher range string

 binding range string

 condition range string

Music is-a Product

DVDMovies is-a Product

ComputerNetworking is-a Product

Figure 1. An OWL schema for a fragment

of the Amazon Database.
 Figure 2. An OWL schema for a fragment of the

eBay Database.

the domain of the property p or a subclass of its domain, because the property p can only be applied to

database instances of that classes.

For example, Table 1 shows a fragment of the vocabulary matching between the schemas in Figure 1

and Figure 2. The first row indicates that the classes am:Book and eb:Book are equivalent. The last

row indicates that the property am:Publ applied to instances of type am:Publ is equivalent to the

property eb:publisher applied to instances of type eb:Book.

A concept mapping from a source schema S to a target schema T is a set of transformation rules that

express concepts of the target schema T in terms of concepts of the source S such that it is possible to

translate queries over T into queries over S.

In this paper we consider queries defined in the SPARQL Query Language for RDF (Prud’hommeaux

and Seaborne, 2008). The query of Figure 3a returns titles, authors and publishers of book instances from

the Amazon database. The variable ?b in lines 4-6 means that only instances which have the properties

author, title and publisher attached to them match the WHERE criteria. The variable ?p in lines 6 and 7

means that, in addition to the previous criteria, only instances which are related to another instance

through the property am:publisher match the WHERE criteria. This is the JOIN relational operator for

RDF graphs. Figure 3b shows an equivalent query over the eBay database.

Let A and E be the schemas of Amazon and eBay databases respectively, and AS and ES be states of

these two databases, i.e. AS and ES contain individuals and their property values of the two databases. The

query depicted in Figure 3a is valid over the RDF graph A  AS.

Now consider the graph G = E  A  AS, i.e. the Amazon data with the vocabularies of Amazon and

eBay. Lets see how to add triples to G in order to get the same answer while submitting the previous two

queries to G. To do that, we adopt the Semantic Web Rule Language (SWRL) (Horrocks et al., 2004), in

a simpler syntax, to infer additional triples. An example of the rules in our simplified syntax would be:

1. eb:title(b,t)  am:title(b,t), am:Book(b)

2. eb:Book(b)  am:title(b,t), am:Book(b)

The first rule says that, if b is an individual attached to the property am:title and it is of class

am:Book then b is attached to the property eb:title. The second rule means that if the same condi-

tions hold then b is of class eb:Book. Note that these two rules can be derived from the second match-

ing depicted on Table 1 because the matching says that the property am:title while attached to in-

stances of class am:Book is equivalent to eb:title when subjects are of class eb:Book. For

example, imagine the triples of the form (b, am:title, t) and (b, rdf:type, am:Book).

We can directly infer the triples (b, eb:title, t) and (b, rdf:type, eb:Book).

We can extend the previous set of set of rules using other rows of Table 1 as follows.

Table 1. Example of a vocabulary matching between Amazon and eBay schemas.

Amazon eBay

v1 e1 v2 e2

am:Book T eb:Book T

am:title am:Book eb:title eb:Book

am:author am:Book eb:author eb:Book

am:listPrice am:Product eb:startPrice eb:Offer

am:name am:Publ eb:publisher eb:Book

1. PREFIX am:<...>

2. SELECT ?title ?author ?pub

3. WHERE

4. {?b am:author ?author.

5. ?b am:title ?title.

6. ?b am:publisher ?p.

7. ?p am:name ?pub}

1. PREFIX eb:<...>

2. SELECT ?title ?author ?pub

3. WHERE

4. {?b eb:author ?author.

5. ?b eb:title ?title.

6. ?b eb:publisher ?pub}

a) SPARQL query over the Amazon database b) SPARQL query over the eBay database

Figure 3. Simple SPARQL queries over the Amazon and eBay databases

3. eb:author(b,a)  am:author(b,a), am:Book(b)

4. eb:Book(b)  am:author(b,a), am:Book(b)

5. eb:startPrice(b,pr)  am:listPrice(b,pr), am:Book(b)

6. eb:Book(b)  am:listPrice(b,pr), am:Book(b)

7. eb:publisher(b,n)  am:publisher(b,p), am:name(p,n), am:Book(b)

8. eb:Book(b,n)  am:publisher(b,p), am:name(p,n), am:Publ(p)

9. eb:Book(b)  am:Book(b)

Note that rule 8 is not directly derived from Table 1. We will later specify, how to derive such a rule.

Now let R be the set of 9 rules derived from vocabulary matching of Table 1 and R(G) be the set of in-

ferred triples from G by R. Then, the queries of Figure 3 over G  R(G) return the same set of answers.

The rules can be used to do query translation. Consider that a query over eBay should be translated in-

to a query over Amazon. According to rule 3, triples of the form (b, eb:author, a) can be derived

from triples (b, am:author, a), (b, rdf:type, am:Book). By the same rule, the triple pat-

tern {?b eb:author ?author} can be replaced by {?b am:author ?author. ?b

am:author ?author.}. Using rules 1, 3 and 7, the query over eBay can be translated into a query

over Amazon as in Figure 4. The translated query can be simplified if we consider that the domain of

am:publisher is am:Book and the domain of am:name is am:Publ. In this case lines 5 and 9 can

be omitted.

3 Instance-based Vocabulary Matching

3.1 Instance-based Technique

In this section, we describe an instance-based process to create contextualized vocabulary matchings that

are structurally consistent.

Let S and T be two (OWL Extralite) schemas, and VS and VT be their vocabularies, respectively. Let CS

and CT be the sets of classes, and PS and PT be the sets of datatype or object properties in VS and VT, re-

spectively.

A contextualized vocabulary matching between S and T is a finite set Vof quadruples (v1,e1,v2,e2)

such that

(i) if (v1,v2)CSCT, then e1 and e2 are the top class T

(ii) if (v1,v2)PSPT, then e1 and e2 are classes in CS and CT that must be subclasses of the do-

mains of v1 and v2, respectively

(iii) and these are the only possible quadruples in V

If (v1,e1,v2,e2) V, we say that V matches v1 with v2 in the context of e1 and e2, that ei is the context of

vi and that (vi,ei) is a contextualized concept, for i=1,2. A contextualized property (or class) matching is a

matching defined only for properties (or classes).

1. PREFIX am:<...>

2. SELECT ?title ?author ?pub

3. WHERE

4. {?b am:author ?author.

5. ?b rdf:type am:Book.

6. ?b am:title ?title.

7. ?b am:publisher ?p.

8. ?p am:name ?pub.

9. ?p rdf:type am:Publ}

Figure 4. Translate SPARQL query from Figure 2

We first recall the matching technique for catalogue schemas based on similarity heuristics introduced

in (Leme et al., 2008a). Briefly, a catalogue is a relational database whose schema S has a single table.

Given a catalogue state US, an attribute A of S is represented by the set of values of A that occur in US, or

by the set of pairs (i,v) such that v is the value of A for the object with id i that occurs in US. If the domain

of A is a set of strings, the set of values is replaced by a set of tokens, and the attribute representations are

reinterpreted accordingly. Similarity, models were then applied to such attribute representations to gener-

ate attribute matchings between two catalogue schemas.

Bilke and Naumann (2005) propose an instance matching technique where each database tuple is

represented by a character string, created by concatenating all attribute values of each tuple. The tech-

nique uses k-mean clustering algorithms to find duplicate tuples. The identification of duplicates is neces-

sary for creating (i,v) representations of attributes. However, we note that the representations of the same

object in distinct databases may differ in the list of attributes and/or in the attribute values. As a conse-

quence, we may end up with dissimilar tuples that are used to represent the same object.

For example, suppose that we apply the Bilke and Naumann technique to match the two instances that

represent the book “The Tragedy of Romeo and Juliet”, whose property-value pairs are shown in Table 2.

If we measure the similarity between the sets of tokens by the percentage of common tokens extracted

from all property values of each instance, we obtain a score of 43% of common tokens. By contrast, if we

consider only the values of properties that match, the similarity increases to 70%. Please note that, to im-

prove the instance matching strategy, we used the fact that am:Book matches eb:Book, and the fact

that several other properties match.

Combining these observations, we propose the four-step vocabulary matching process outlined as fol-

lows:

(1) Generate a preliminary property matching using similarity functions.

(2) Use the property matching obtained in Step (1) to generate a class matching.

(3) Use the property matching obtained in Step (1) to generate an instance matching.

(4) Use the class matching and the instance matching obtained in Step (2) to generate a refined con-

textualized property matching.

The final vocabulary matching is the result of the union of the class matching obtained in Step (2) and

the refined property matching obtained in Step (4). Step (1) generates a preliminary property matching

based on the intuition that “two properties match iff they have many values in common and few values not

in common”. Step (2) creates class matchings that reflect the intuition that “two classes match iff they

have many matching properties”. To work correctly, Step (2) and (3) require that Step (1) generates pre-

liminary property matchings that do not use (i,v) pairs to represent properties.

In what follows, let S and T be two schemas, VS and VT be their vocabularies, PS and PT be their sets of

properties, and CS and CT be their sets of classes, respectively. Let US and UT be fixed sets of triples of S

and T, respectively, to be used to compute the vocabulary matchings.

Table 2. Example the same book instance representation in eBay and Amazon.

eBay Amazon

isbn-10 = “039577537X” isbn = “039577537X”

isbn-13 = 9780395775370 ean = 9780395775370

title = “The Tragedy of Romeo

and Juliet”

title = “Tragedy of Romeo and Ju-

liet: And Related Readings (Litera-

ture Connections)”

author = “William Shakespeare” author = “William Shakespeare”

publisher = “Houghton Mifflin” name = “Houghton Mifflin Company”

returnPolicyDetails = “NO

RETURNS ARE ACCEPTED”

-

condition = “Like New” -

binding = “Hardcover” -

- listPrice = 18.92

- currency = “USD”

Step (1): Preliminary property matching

Let U be the universe of all tokens extracted from literals and all URIrefs. Consider a similarity func-

tion :U×U→[0,1], a similarity threshold [0,1] and a related similarity threshold ’[0,1] such that

’< .

For each property PPS, for each class CCS such that C is the domain of P or a subclass of the do-

main of P, consider the contextualized property P
C
=(P,C) and construct the set o[US,P

C
] of all v such that

either there are triples of the form (I,P,v) and (I,rdf:type,C’) in US or there are triples of the

form (I,P,s) and (I,rdf:type,C’) in US where v is a token in the literal string s, where C’=C or

C’ is a subclass of C, and likewise for a property in PT. We call o[US,P
C
] the observed-value representa-

tion of P
C
 in US. This construction explores the fact that P is inherited by all subclasses of its domain.

The contextualized property matching P between S and T induced by  and , and based on the ob-

served-value representation of properties, is the relation P such that

(P,C,Q,D)Piff (o[US,P
C
],o[UT,Q

D
])   (1)

Step (2): Class matching

For each class C in CS, let props[S,C] be the set of properties in PS whose domain is C or that C inhe-

rits from its superclasses, and likewise for classes in CT. We call props[S,C] the property representation

of C in US.

The contextualized class matching C between S and T induced by ,  and P is the relation C 

CSCT such that (recall that T is the top class)

(C,T,D,T)Ciff (props[S,C],props[S,T,D]))   (2)

where props[S,C,T,D] = relprops[S,C,T,D]  not_relprops[S,C,T,D], relprops[S,C,T,D] denotes the set

of properties P of class C of S such that there is a property Q of the class D of T such that (P,C,Q,D)P

and where not_relprops[S,C,T,D] denotes the set of properties P of the class D of T such that there are

not related properties in S by P. Note that it does not make sense to directly compute

(props[S,C],props[T,D]), since props[S,C] and props[T,D] are sets of URIrefs from different vocabula-

ries. To avoid this problem, we replaced props[T,D] by props[S,C,T,D].

Step (3): Instance matching

From the matchings directly induced by  and , computed in the previous step, the process then de-

rives an instance matching and a refined contextualized property matching, as follows.

Figure 5 shows the algorithm that computes the instance matching. Its inputs are S, T, class matching

C and property matching P. It also implicitly receives US and UT as input. It outputs the instance match-

ing I that relates matching class instances in US and UT.

In Figure 5, if C is a class in CS, and I is an instance of C in US, then tI[S,C,I,T,D] denotes the set of

tokens extracted from all values v such that, for some property PPS, for some property Q in PT, for some

class DCT, there is a triple (I,P,v) in US and there is a quadruple (P,C,Q,D) in P. In addition, if C is a

class in CS, and J is an instance of D in UT, then tJ[S,C,T,D,J] denotes the set of tokens extracted from all

values v such that, for some property PPS, for some property Q in PT, for some class DCT, there is a

triple (I,Q,v) in UT and there is a quadruple (P,C,Q,D) in P.

INSTANCE-MATCHING(S,T,C,p)
for each pair of classes (C,D) in S and T

such that C matches C with D

 for each pair of instances (I,J) of C and D in US and UT

 if (tI[S,C,I,T,D],tJ[C,C,T,D,J])  then

  =   (I,C,J,D)

Figure 5. The class instance matching algorithm.

Step (4): Refined property matching

Figure 6 shows the algorithm that computes the refined contextualized property matching. It depends

on the following additional definitions. For each (P,C,Q,D)P such that (C,T,D,T)C, construct the set

q of triples (I,u,v) such that there are triples of the form (I,P,u) and (I,rdf:type,C) in US, there are

triples of the form (J,Q,v) and (J,rdf:type,D) in UT, and (I,C,J,D)I (where I is the instance

matching of Figure 3). Define iv[P,C,Q,D]=(s,t) such that s={(I,u)/(v)(I,u,v)q} and

t={(I,v)/(u)(I,u,v)q}. We call s the instance-value representation of P
C
 in US (and likewise for t). This

second representation is useful since it helps distinguish between properties with similar sets of values,

that refer to distinct instances, matched by I.

Returning to the algorithm in Figure 6, it has similar inputs to the algorithm depicted in Figure 5. Its

output, however, is the contextualized property matching A between properties whose domains are

classes directly or indirectly matched by C. The algorithm uses the maximum similarity values computed

using the observed-value and the instance-value representations for a pair of properties P and Q, and the

more relaxed similarity threshold. Although not shown in Figure 6, object properties receive a special

treatment, since their representations are sets of URIrefs that are compared with help of the instance

matching I (computed by the algorithm in Figure 5).

The final vocabulary matching is the union of the class matching C induced by ,  and P and the

contextualized property matching A computed by the algorithm in Figure 6.

3.2 Experimental Vocabulary Matching Results

We conducted an experiment to assess the performance of the vocabulary matching process described in

section 3.1, using product data obtained from Amazon and eBay websites.

We preferred to use data directly downloaded from the Web, rather than using the benchmark proposed

in (Duchateau et al., 2007), because the last does not include instances and, therefore, is unsuitable to test

the proposed process.

We first defined a set of terms, which was used to query both databases. From the query results, we ex-

tracted the less frequent terms common in both databases. We then used this set of terms to query the da-

tabases once more. This pre-processing step enhanced the probability of retrieving duplicate objects from

the databases, which is essential to evaluate any instance-based schema matching technique. We extracted

a total of 116,201 records: 16,410 from Amazon and 99,791 from eBay.

As similarity functions we adopted the contrast model (Leme et al., 2008a) for property matchings, and

the cosine distance with TF/IDF for instance matchings. The experiments provided us with enough empir-

ical data to conclude that the contrast model performs better in situations where the goal is to emphasize

the differences between two sets of values. This follows because the contrast model allows for parameter

calibration.

Table 3 shows sample entries of the vocabulary matching obtained. The headings indicate that e1 is the

context of v1, and e2 that of v2. Also, “B” abbreviates classes eb:Book and am:Book.

CONTEXTUALIZED-PROPERTY-MATCHING(S,T,C,I)
for each pair of classes (C,D) in S and T

such that C matches C with D

or C’ dominates C and C matches C’ with D

or C matches C with D’ and D’ dominates D
 for each pair (P,Q) of properties of C and D

 X(o[US,P
C
],o[UT,Q

D
])

 if (C matches D) then

 (s,t)=iv[P,C,Q,D]

 Ys,t)
 else

 Y0

 if max(X,Y) ’ then

 A = A  (P,C,Q,D)

Figure 6. The contextualized property matching algorithm.

The rightmost column of Table 3 classifies the matchings in types: tp for true positive, fp for false

positive and fn for false negative. Since the total number (not all shown in Table 3) of true positives is 25,

that of false positives is 4 and that of false negatives is 10, the performance measures therefore are:

%86



fptp

tp
precision , %71




fntp

tp
recall , %782 






recallprecision

recallprecision
F

Lines 3, 5 and 6 of Table 3 refer to matchings that would have been considered false negatives, if the

algorithm in Figure 4 ignored the instance-value representation of properties. In this case, the perfor-

mance measures would drop to:

%82precision %51recall %63fMeasure

4 Concept Mapping Induced by Vocabulary Matching

4.1 Definition

Let S be an OWL Extralite schema in what follows.

We say that S is well-formed iff

 for any property p of S, the domain of p is a class of S

 for any object property p of S, the range of p is a class of S

 for any class c of S, if s is defined as a superclass of c in S, then s is also a class of S

We understand S as a theory T[S]=(A[S],C[S]) in ALCQI (Chomicki and Saake, 1998), a dialect of

Description Logics, such that

 the concepts and roles of the alphabet A[S] are the classes and properties of S

 the axioms of C[S] are the constraints of S, denoted in ALCQI as follows:

o a property p has domain d and range r: T ⊑ p.r ⊓ p

.d

o a property p, with range r, is inverse functional: r ⊑ ( 1 p
 

)

o a property p, with domain d, has minCardinality k: d ⊑ ( k p)

o a property p, with domain d, has maxCardinality k: d ⊑ ( k p)

o a class s is defined as a superclass of c: c ⊑ s

In what follows, we will also use from ALCQI the intersection of two concepts, denoted c ⊓ d, and

the subsumption of two concepts, denoted c ⊑ d.

Table 3. Automatically obtained vocabulary matching from eBay into Amazon.

eBay Amazon Match Type

 v1 e1 v2 e2

1 Books T Books T tp

2 author B author B tp

3 edition B edition B tp

4 format B biding B tp

5 isbn-10 B isbn B tp

6 isbn-13 B ean B tp

7 editionDesc B format B fp

8 Offer T Books fp

Let V be the set of variables, which is assumed to be disjoint from the set of concepts of S. A class lit-

eral is an expression of the form c(x), where c is a class and x is a variable; a property literal is an expres-

sion of the form p(x,y), where p is a property and x and y are variables; a literal is a class literal or a prop-

erty literal. A conjunction is a list of literals separated by commas. A disjunction is a list of conjunctions

separated by semi-colons. (This notation should be familiar to Prolog programmers).

A rule is an expression of one of the forms:

 c(x)B[x], where c(x) is a class literal and B[x] is a disjunction where the variable x occurs in

each conjunction

 p(x,y)B[x,y], where p(x,y) is a property literal and B[x,y] is a disjunction where the va-

riables x and y occur in each conjunction

The literal is the head and the disjunction is the body of the rule. We use the notation B[x] and B[x,y]

to stress which variables must occur in the body.

Let I be a set of triples of S. The universe of I is the set U[I] of all URIrefs and literals that occur in

triples of I.

Consistently with the notion of interpretation of Description Logics, given a class c of S, the interpre-

tation of c in I is the set

c
I
 = { iU[I] / (i,:type,c)I }

and, given a property p of S, the interpretation of p in I is the binary relation

p
I
 = { (i,o)U[I]U[I] / (i,p,o)I }

The interpretation of the intersection of two concepts c ⊓ d is the set

(c ⊓ d)I = cI  dI

We say that the subsumption of two concepts c ⊑ d is true in I, denoted

I ⊨ c ⊑ d, iff
II dc  .

Rather than resorting to the formalization in ALCQI, we directly define when a constraint  of S is

true in I, denoted I ⊨ :

 if  declares that a property p has domain d and range r, then

I ⊨ iff III rdp 

 if  declares that a property p, with range r, is inverse functional, then

I ⊨ iff, for any
Irb  , card({ aU[I] / (a,b)pI })  1

 if  declares that a property p, with domain d, has minCardinality k, then

I ⊨ iff, for any
Ida  , card({ bU[I] / (a,b)pI })  k

 if  declares that a property p, with domain d, has maxCardinality k, then

I ⊨ iff, for any
Ida  , card({ bU[I] / (a,b)pI })  k

 if  declares that a class s is a superclass of c, then

I ⊨ iff
II sc 

We now turn to the semantics of rules. A valuation for the set of variables V in I is a function v that

maps the variables in V into elements of U[I].

We extend the notion of interpretation of the right-hand side of the rule as follows. We first define

when the right-hand side of rule B is true in I for v, denoted I,v ⊨B, inductively as follows:

 if B is of the form c(x) then I,v ⊨B iff v(x)c
I

 if B is of the form p(x,y) then I,v ⊨B iff (v(x),v(y))p
I

 if B is of the form C,D then I,v ⊨B iff I,v ⊨C and I,v ⊨D

 if B is of the form C;D then I,v ⊨B iff I,v ⊨C or I,v ⊨D

The interpretation of the righ-hand side of a rule of the form B[x] in I is the set

B[x]
 I
 = { aU[I] / there is a valuation v for V in I such that I,v ⊨B[x] and v(x)=a }

and the interpretation of the right-hand side of a rule of the form B[x,y] in I is the binary relation

B[x,y]
 I
 ={(a,b)U[I]U[I] / there is a valuation v for V in I such that I,v ⊨B[x,y] and v(x)=a and v(y)=b}

Finally, we say that a set I of triples of S is consistent iff I satisfies all constraints of S.

4.2 Derivation from Vocabulary Matching

Given an OWL schema, we say that a class f dominates a class c or the intersection c= d ⊓ e of two

classes d and e iff there is a sequence (c1,c2,...,cn) such that

 f=c1 and c=cn

 cn-1 subsumes cn

 for each i[1,n-2), either

o ci+1 and ci are classes and ci+1 is declared as a subclass of ci, or

o ci+1 is a class, ci is an object property and ci+1 is declared as the range of ci, or

o ci+1 is an object property, ci is a class and ci is declared as the domain of ci+1

We also say that =(c1,c2,...,cn) is a dominance path from c to d and =(
m21 kkk ppp ,...,,), the subse-

quence of  consisting of the object properties that occur in , is the property path corresponding to 

(note that  may be the empty sequence).

Let S and T be two (OWL Extralite) schemas in what follows. Recall that a contextualized vocabulary

matching between S and T is a finite set Vof quadruples (v1,e1,v2,e2).

A contextualized vocabulary matching V from S into T is structurally correct iff, for all (v1,e1,v2,e2) 

V such that v1 and v2 are properties:

(i) there is a class f of S such that V matches f with the domain of v2 and f dominates d1 ⊓ e1,

where d1 is the domain of v1

(ii) if v1 is a datatype property, then the range of v1 is a subtype of the range of v2

(iii) if v1 is an object property, then V matches the range of v1 with the range of v2

Let V be a structurally correct contextualized vocabulary matching. A concept mapping  from S in-

to T induced by V is a set of rules derived from the quadruples of V as follows.

For each quadruple (v1,e1,v2,e2)V, the concept mapping  contains the following rules:

Case 1: v1 and v2 be classes. Then,  contains rules of the form

v2(x)  v1(x)

s(x)  v1(x) for each superclass s of v2

Case 2: v1 and v2 are properties. Let d1 and d2 be the domains, and r1 and r2 be the ranges of v1 and v2 (re-

call that r1 and r2 are XML Schema data types, if v1 and v2 are datatype properties, and that V matches

the range of v1 with the range of v2, if v1 and v2 are object properties).

Case 2.1: V matches d1 with d2. Then,  contains a rule of the form

v2(x,y)  v1(x,y), e1(x)

Case 2.2: V does not match d1 with d2. Let f be a class of S such that V matches f with d2 and f domi-

nates d1 ⊓ e1. Let
m21 kkk ppp ,...,, be the property path corresponding to a dominance path from f to d1

⊓ e1. Then,  contains a rule of the form

v2(x,y) ),(),...,,(),,(zxpxxpxxp 1mk21k1k m21  , v1(z,y), e1(z)

if the property path is nonempty; otherwise the rule reduces to that of case 2.1. (Note that, since V is

structurally correct, a dominance path from f to d1 indeed exists. Also note that, since the dominance path

may not be unique, the concept mapping induced by V is not unique).

Note that the contextualized vocabulary matching V may have more than one quadruple for the same

concept v2 of the target schema, which implies that the above process may generate more than one rule for

v2. In addition, v2 may be a superclass of more than one class which, again, implies that the process de-

scribed in Case 1, may generate more than one rule for v2. Therefore, as a last step in the construction of

the concept mapping , we collect all rules for v2 in a single rule with a disjunctive body. More precisely,

if v2 is a class, and the above process generates rules of the following form

v2(x)Bi[x], for i[1,n]

then, we replace all such rules by a single rule  of the form

v2(x)B1[x] ; ... ; Bn[x]

and likewise, if v2 is a property.

We say that a rule  in M defines a concept v2 of T iff the head of  is of the form v2(x), if v2 is a class,

or of the form v2(x,y), if v2 is a property (by the transformation described above, M has at most one rule

for each concept of T).

However, there might be a concept v2 of T such that M has no rule that defines v2. We therefore define

T/M as the subset of T restricted to the concepts that M defines. Then, the constraints of T/M are the con-

straints of T defined over such vocabulary. In particular, we can prove that superclasses, domains and

ranges are properly defined in T/M.

Proposition 1: Let V be a structurally correct contextualized vocabulary matching and  be a concept

mapping from S into T induced by V. Then:

(i) for any class c of T/M, if s is a superclass of c in T, then s is also a class of T/M.

(ii) for any property p of T/M, the domain of p is also a concept of T/M.

(iii) for any object property p of T/M, the range of p is also a concept of T/M.

Proof

(i) Let c be a class of T/M and s be a superclass of c in T. Since c is a class of T/M, by Case 1 of the

construction of M, there is a rule in M of the form c(x) p1(x). Since s is a superclass of c, again by

Case 1, there is a rule in M of the form s(x) p1(x). Hence, s is defined in M, that is, s is a class of

T/M.

(ii) Let p be a property of T/M. Let d be domain of p. Since p is a property of T/M, by Case 2, there

is a rule in M of the form p(x,y) B[x,y] and a class f of S such that V matches f with the domain d

of p. Then, by Case 1, there is a rule in M of the form d(x)f(x). Hence, d is defined in M, that is, d

is a class of T/M.

(iii) Let p be an object property of T/M. Let r be the range of p. Since p is an object property of T/M,

by Case 2, there is a rule in M of the form p(x,y) B[x,y] and a class g of S such that V matches g

with the range r of p. Then, by Case 1, there is a rule in M of the form r(x) g(x). Hence, r is de-

fined in M, that is, r is a class of T/M.

Corollary 1: T/M is a well-defined OWL Extralite schema.

Finally, we define the function  induced by  as the mapping from sets of triples of S into sets of

triples of T/M such that, for each set of triples I of S, J =)I( iff, for each rule  in 

 if  is of the form c(x)B[x], then J contains a triple (i,:type,c) iff iB[x]
I

 if  is of the form p(x,y)B[x,y], then J contains a triple (i,p,j) iff (i,j)B[x,y]
I

We stress that  is used to map queries submitted to the target schema T into queries of the source

schema S, whereas  is a theoretical device to prove the consistency of the concept mapping, as dis-

cussed in the next section.

4.3 Consistency

In this section we briefly discuss the consistency of OWL Extralite vocabulary matchings, referring the

reader to (Leme, 2009) for the detailed definitions and proofs.

In what follows, we use the notion of subsumption as in Description Logic. We say that a class c do-

minates a class d iff there is a sequence (c1,c2,...,cn) of classes such that c=c1, d=cn and, for each i[1,n-

2), either ci+1 is declared as a subclass of ci or there is an object property whose domain is ci and whose

range is ci+1, and cn-1 subsumes cn. We consider that a class dominates itself.

A contextualized vocabulary matching  from S into T is structurally correct iff, for all (v1,e1,v2,e2) 

 such that v1 and v2 are properties:

(i) there is a class f of S such that  matches f with the domain of v2 and f dominates e1 (recall from

the definition of vocabulary matching that e1 is a subclass of the domain of v1)

(ii) if v1 is a datatype property, then the range of v1 is a subtype of the range of v2

(iii) if v1 is an object property, then  matches the range of v1 with the range of v2

A concept mapping  from S into T induced by a structurally correct contextualized vocabulary match-

ing  is a set of rules derived from  as suggested by the examples in Section 2.2. The rules in  in turn

induce a function that maps sets of triples of S into sets of triples of T.

We say that the declarations of the domain and range of properties, property characteristics, cardinality

restrictions, and subclass declarations are the constraints of a schema.

We denote the minCardinality and the maxCardinality of a property p by mC[p] and MC[p], respec-

tively. By convention, we take mC[p]=0 (and MC[p]=), if minCardinality (or maxCardinality) is not

declared for p.

A property q is no less constrained than a property p iff mC[p]  mC[q] and MC[p]  MC[q] and, if p

is declared as inverse functional, then so is q. Note that this definition applies even if p and q are from dif-

ferent schemas.

Let S and T be two schemas,  be a structurally correct contextualized vocabulary matching from S in-

to T, and  be a concept mapping from S into T induced by .

Let  be a rule in  of the form p(x,y)B[x,y]. By construction, p is a property of T and all classes and

properties that occur in B[x,y] belong to S. We introduce a property of S, denoted prop[B], defined by

B[x,y]. We say that  is correct iff prop[B] is no less constrained than p. We then say that  is correct iff

all rules in  are correct.

Finally, we say that a constraint  of T is relevant for  iff  uses only concepts that occur in the heads

of the rules in . We then say that  is consistent iff, if I is a consistent set of triples of S, then the set of

triples of T defined by J=)I( satisfies all constraints of T that are relevant for .

Lemma 1: Let  be a structurally correct contextualized vocabulary matching and  be a concept map-

ping from S into T induced by . Assume that  is correct. Then,  is consistent.

 (The proof generalizes Examples 2, 3 and 4. See [Leme, 2009] for the details).

5 Storing Provenance Data for Matchings

In this section we discuss the problem of storing provenance data for schema matchings and propose a da-

ta model for provenance applied to the algorithm presented in section 2.

Clearly, schema matching process is a laborious task. Automatic or semi-automatic tools that are able

to identify such correspondences definitely boost up the process. Nevertheless, schema matching algo-

rithms, in general, must be calibrated so as to achieve better performance in relation to false positives and

negatives. Leme et al. (2008) propose a cross validation process which aims at choosing the best similari-

ty model and calibrations for a given set of test data. In this context, provenance data could be used to

store parameters and calibrations for each matching result in order to allow fot the identification of the

best models.

Benchmarks are also very important to refine matching algorithms and to identify best suited scena-

rios for each algorithm. Of course the algorithms must be compared over the same dataset, otherwise it

does not make sense to compare performance measures. A classification of the scenarios might also be

useful. If schemas are classified according their application domains, we could identify the ones that work

better in the geographic domain, for instance.

Finally, matching entries can be validated by using a semi-automated matching process. In this case,

we would make the internal representation of schema elements, the intermediate matching calculations

and the final similarity degree between elements available. This information would help users to decide

and/or validate the matchings.

Our provenance model consists of an OWL schema (top left of Figure 7), modeled as an aggregation

of elements, specialized into classes, properties, and instances. A matchable is any object that can be

matched to another objet (classes or properties).

Each schema is associated with one of more datasets (bottom left of Figure 7). Each dataset contains a

set of triples, which describes the elements of the schema, including instances of classes and properties. A

schema also has a set of features, that can be used to identify the best model for a given scenario. For ex-

ample, if feature[0] contains the classification categories of the schemas, it would be possible to select

the best algorithms for the particular domain of feature [0].

From a dataset, representations (Set in Figure 7) for each matchable of the schema are extracted

(Leme et al., 2009b). Each representation is a set of values, and has a type. For example, a property can be

represented by a set of tokens extracted from its observed values, in this case the set is of type Token and

values are the extracted tokens of the property values. Our matching technique proposes the following re-

presentation sets for each type schema elements:

(i) Classes:

a. Set of properties (denoted by props)

(ii) Properties (datatype and object properties)

a. Set of tokens (denoted by o)

b. Set of instance value (i,v) pairs (denoted by iv)

(iii) Instances

a. Set of tokens (denoted by t)

The Matcher (top right of Figure 7), stores descriptions of matching algorithms, or matchers, and of

similarity functions (Similarity in Figure 7). To model the fact that a matching algorithm has a series of

matching steps, as in Section 3.1, a matcher is modeled as an aggregation of matchers. Each matcher ap-

plies one or more similarity functions, using a parameter list, if available. The matching algorithm de-

scribed at the end of Section 3.1 provides the archetypal example of the family of instance-based match-

ing algorithms that the tool supports. In this example we used the similarity functions cosine distance and

contrast model which are stored in Similarity. In step 1 we used the contrast model function applied to the

token representation of properties (o). In step 2 we applied the contrast model function to the property re-

presentation of classes (props). In step 3 we used cosine distance function applied to token representation

of instances (t). In step 4 we used contrast model function applied to token (o) and instance value (iv) re-

presentations of properties. The configuration of the similarity functions is stored by the Aplies class (top

right of Figure 7).
Each execution of a matcher (bottom right of Figure 7) stores the parameter values that were used, and

the similarity functions were applied (SimExecution in Figure 7). It also stores the order in which the si-

milarity functions were applied, as well as values used in the computations. Each execution results in an

aggregation of matching entries (Entry), which, in turn, model a vocabulary matching. In step 1 we used

 = 1.0,  =  = 3.5 and threshold () = max similarity – 31% as the parameters values. In step 2 we used

threshold () = 0.8 as the parameter values. In this step, because we used the cosine distance, there were

no configuration parameters required to run the similarity function. In step 3 we used  = 1.0,  =  = 3.5

and threshold () = max similarity – 26%. In step 4 we used  = 1.0,  =  = 3.5 and threshold () = max

similarity – 12% for the similarities between token and instance representations of properties. All parame-

ters were stored in the parameterValues of Execution. The type of an Entry tells us if it is false positive,

false negative and so on. It is only used in cross validation matchings, as inputs for performance measur-

ing. The similarity is the final similarity measure for each particular entry.

6 Conclusions

In this paper, we proposed hybrid matching techniques based on instance values and on schema infor-

mation, such as datatypes, cardinality and relationships. The techniques uniformly apply similarity func-

tions to generate matchings and are grounded on the interpretation, traditionally accepted, that “terms

have the same extension when true of the same things” (Quine, 1968). In our context, two concepts match

if they denote similar sets of objects. The techniques essentially differ on the nature of the sets to be com-

pared and on the similarity functions adopted. For example and in a very intuitive way, two classes match

if their sets of observed instances are similar, two terms from different thesauri match if the sets of in-

stances they classify are similar, properties match if their sets of observed values are similar.

The assumptions that the database schemas we want to match are described in OWL notation, and that

data from the databases can be obtained as sets of RDF triples facilitated the construction of matching

techniques. However, the techniques introduced in the paper can be directly applied to conceptual sche-

mas described in other conceptual modeling representation languages, such as the relational model (Codd,

1970). In conjunction, these assumptions permitted us to concentrate on a strategy to unveil the semantics

of the database schemas to be matched, without being distracted by syntactical peculiarities. In fact, we

consider good practice to provide OWL descriptions of the export schemas of data source providers. In

conjunction with WSDL descriptions of the Web Services encapsulating the backend databases, this

measure facilitates the interoperability of databases.

We focused on the more complex problem of matching two schemas that belong to an expressive

OWL dialect. We decomposed the problem of OWL schema matching into the problems of vocabulary

matching, and the problem of concept mapping. We also introduced sufficient conditions to guarantee

that a vocabulary matching induces correct concept mappings. We adopted the contrast model (Tversky

and Gati, 1978) as the preferred similarity function, which proved to efficiently capture the notion of si-

milarity in this context, and described heuristics that led to practical OWL matchings.

Figure 7. Diagram of the internal database.

Differently from the work of (Doan et al., 2001; Madhavan et al., 2005), we did not use machine learn-

ing techniques to acquire knowledge about matchings. Instead, we captured semantic similarity by adopt-

ing similarity functions and heuristics that depended on schema concepts. We consider this strategy to be

more general because it identifies matching candidates that do not belong to the training corpus.

Unlike any of the instance-based techniques previously defined (see Section 1, the OWL schema

matching process we described uses similarity functions to induce vocabulary matchings in a non-trivial

way. The results demonstrated that the proposed technique performs well, with precision and recall rates

around 80%.

Contrasting to the work of (Brauner et al., 2007b; Wang et al., 2004), which measure similarity be-

tween concepts based on the commonalities between sets of values alone, we made use of similarity func-

tions that took into account not only the commonalities, but also the differences between concepts.

Differently from the work of (Bilke and Naumann, 2005), we overcame the limitations of representing

instances using strings that concatenated all of its property values, by representing instances using strings

that were constructed using only matching properties, as the first approximation.

As future work, we are considering three broad areas. First, further work is required on techniques to

gradually construct the matchings as new data becomes available, which is typical of a query mediation

environment. We refer the reader to (Brauner et al., 2006; Brauner et al., 2008) for discussions about this

issue. Second, belief revision techniques should be investigated to help adjust the mediated schemas in

time, as new data sources are integrated into the mediated environment. Third, implementation issues are

pending, although (Gazola, 2008; Gazola et al., 2007) is a step in this direction.

In summary, unlike previous approaches, we proposed hybrid matching techniques that are uniformly

grounded on similarity functions to generate matchings between simple catalogue schemas, as well as be-

tween more complex OWL schemas. We introduced the idea of decomposing the problem of schema

matching into the problems of vocabulary matching and concept mapping, which are often confused in

the literature. We also showed when a vocabulary matching induces correct concept mappings, with re-

spect to the integrity constraints of the schema, an issue also frequently overlooked in the literature.

Acknowledgements

This work was partly supported by CNPq under grants 557128/2009-9, 142103/2007-1, 301497/2006-0,

and 473110/2008-3, and by FAPERJ under grant E-26/170028/2008.

References

1. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F., and Stein,

L. A. (2004). OWL web ontology language reference. W3C Recommendation. Last access on Dez 2008 at:

http://www.w3.org/TR/owl-ref/.

2. Bilke, A. and Naumann, F. (2005). Schema matching using duplicates. In Proc. of the 21st Int’l. Conf. on Data

Engineering, pages 69–80.

3. Brauner, D. F., Casanova, M. A., and Milidiú, R. L. (2006). Mediation as recommendation: an approach to the

design of mediators for object catalogs. In On the Move to Meaningful Internet Systems 2006: OTM 2006 Work-

shops, volume 4277 of Lecture Notes in Computer Science, pages 46–47.

4. Brauner, D. F., Casanova, M. A., and Milidiú, R. L. (2007a). Towards gazetteer integration through an instance-

based thesauri mapping approach. In Advances in Geoinformatics; VIII Brazilian Symp. on GeoInformatics,

GEOINFO, pages 235–245.

5. Brauner, D. F., Gazola, A., and Casanova, M. A. (2008). Adaptative matching of database web services export

schemas. In Proc. of the 10th Int’l. Conf. on Enterprise Information Systems (ICEIS), pages 49–56.

6. Brauner, D. F., Intrator, C., Freitas, J. C., and Casanova, M. A. (2007b). An instance-based approach for match-

ing export schemas of geographical database Web services. In Proc. of the IX Brazilian Symp. on GeoInformat-

ics (GEOINFO), pages 109–120.

7. Casanova, M., Breitman, K., Brauner, D., and Marins, A. (2007). Database conceptual schema matching. Com-

puter, 40(10):102–104.

8. Castano, S., Ferrara, A., Montanelli, S., and Racca, G. (2004). Semantic information interoperability in open

networked systems. In Proc. of Semantics for Grid Databases, First Int.’l IFIP Conference, ICSNW, volume

3226 of Lecture Notes in Computer Science, pages 215–230.

9. Chomicki, J. and Saake, G. (1998). Logics for Databases and Information Systems, chapter 8 - Description Log-

ics for Conceptual data modeling. Springer.

10. Codd, E. F. (1970). A relational model of data for large shared data banks. Commun. ACM, 13(6):377–387.

11. Doan, A., Domingos, P., and Halevy, A. Y. (2001). Reconciling schemas of disparate data sources: a machine-

learning approach. In Proc. of the 2001 ACM SIGMOD Int’l. Conf. on Management of Data, volume 30, pages

509–520.

12. Duchateau, F., Bellahsène, Z., and Hunt, E. (2007). XBenchMatch: a benchmark for XML schema matching

tools. In Proc. of the 33rd Int’l. Conf. on Very Large Data Bases, Demo Sessions: group 1, pages 1318–1321.

13. Euzenat, J. and Shvaiko, P. (2007). Ontology matching. Springer-Verlag.

14. Gazola, A. (2008). A software infrastructure for catalog matching. Master’s thesis, Departamento de Informáti-

ca, PUC-Rio.

15. Gazola, A., Brauner, D., and Casanova, M. A. (2007). A mediator for heterogeneous gazetteers. In Poster ses-

sion of the 22nd Brazilian Symposium on Database.

16. Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosofand, B., and Dean, M. (2004). SWRL: A seman-

tic web rule language combining OWL and RuleML. W3C Member Submission. Last access on Dez 2008 at:

http://www.w3.org/Submission/SWRL/.

17. Leme, L. A. P., Brauner, D. F., Breitman, K. K., Casanova, M. A., and Gazola, A. (2008a). Matching object ca-

talogues. Journal Innovations in Systems and Software Engineering, 4(4):315–328.

18. Leme, L. A. P. P. (2009). Conceptual schema matching based on similarity heuristics. DSc Thesis (Advisor: Ca-

sanova, Marco Antonio), Department of Informatics – Pontifical Catholic University of Rio de Janeiro.

19. Leme, L. A. P. P., Casanova, M. A., Breitman, K. K., and Furtado, A. L. (2008b). Evaluation of similarity meas-

ures and heuristics for simple RDF schema matching. Monografias em Ciência da Computação MCC44/08, De-

partment of Informatics – Pontifical Catholic University of Rio de Janeiro.

20. Leme, L. A. P. P., Casanova, M. A., Breitman, K. K., and Furtado, A. L. (2009a). Database mediation using

multi-agent systems. In Proc. of the 32nd Annual IEEE Software Engineering Workshop (SEW-32 2008), pages

125–133. IEEE.

21. Leme, L. A. P. P., Casanova, M. A., Breitman, K. K., and Furtado, A. L. (2009b). Instance-based OWL schema

matching. In Proc. of the 11th Int’l. Conf. on Enterprise Information Systems, volume 24 of Lecture Notes in

Business Information Processing, pages 14–26. Springer.

22. Madhavan, J., Bernstein, P., Doan, A., and Halevy, A. (2005). Corpus-based schema matching. In Proc. of the

21st Int’l. Conf. on Data Engineering, pages 57–68.

23. OMG (2009). OMG Unified Modeling Language, superstructure.

24. Prud’hommeaux, E. and Seaborne, A. (2008). SPARQL query language for RDF. W3C Recommendation. Last

access on Dez 2008 at: http://www.w3.org/TR/rdf-sparql-query.

25. Quine, W. V. (1968). Ontological relativity. The Journal of Philosophy, 65(7):185–212.

26. Rahm, E. and Bernstein, P. (2001). A survey of approaches to automatic schema matching. The VLDB Journal,

10(4):334–350.

27. Tversky, A. and Gati, I. (1978). Studies of similarity. Cognition and categorization, 1:79–98.

28. Wang, J., Wen, J., Lochovsky, F., and Ma, W. (2004). Instance-based schema matching for web databases by

domain-specific query probing. In Proc. of the 13th Int’l. Conf. on Very Large Data Bases, pages 408–419.

