

Web Knowledge Representation with Autonomic
Ontologies

Stainam Brandao1, Jonice Oliveira2, Jano Moreira de Souza1

1COPPE/UFRJ - Coordenação dos Programas de Pós-graduação de Engenharia –
Universidade Federal do Rio de Janeiro (UFRJ) – Rio de Janeiro, RJ - Brasil

2DCC/IM/UFRJ – Instituto de Matemática – Universidade Federal do Rio de Janeiro
(UFRJ) – Rio de Janeiro, RJ - Brasil.

{stainam,jano}@cos.ufrj.br; jonice@dcc.ufrj.br

Abstract. The success of the semantic web is intrinsically related to the use of
ontologies. This important role given to ontologies in the semantic web implies
increasing need for development and maintenance of domain ontologies, even
with the scarcity of tools supporting the life cycle from creation to
management and adaptation. In this article, we presented an ongoing doctoral
work that focus on the Web knowledge representation available with domain
ontologies and processing of this knowledge autonomously through a
systematic evaluation and redesign of the ontology. The autonomic computing
approach was used to provide the ability to adapt ontologies on the
independent environment like the Web, where there is no restriction on the
information being published, which can damage their quality.

1. Introduction
Ontologies are defined in this work as a representation of the conceptualization [Gruber
1993] and thus, a symbolic representation of world concepts taking an epistemological
view of reality and therefore a possibility of consistent world [Guizzardi 2005]. Also,
the language and common sense influence on the ontology building, because our mind
filters out this reality, where a concept is used in different contexts and its meaning
depends on context.

 Ontologies have proven beneficial to the representation of domain knowledge
[Alani and Brewster 2005], and its importance in the semantic web [Berners-Lee ,
Hendler and Lassila 2001]. In this case, ontologies often support the process of indexing
resources content, which is called semantic annotation and can result in the
representation of explicit knowledge that cannot be assessed and managed because of
their mess.

 However, ontologies as a conceptual model for a business domain should react
to any changes in business environment, without affecting the intended model and also
incorporating additional functionality in accordance with changes in the user's needs,
organizing information in a better way, etc. If the ontology update or semantic

annotation is performed in an inconsistent, redundant or incomplete way, then
reliability, accuracy and efficiency of the system decrease significantly [Maedche,
Motik, Stojanovic, Studer and Volz 2003]. According to these authors, to avoid these
real problems, ontologies-based applications may support mechanisms for changes
detection, analyze and resolve it in a consistent way.

 In this paper, we present an autonomic mechanism for ontology concept
fragmentation and assessment criteria to achieve a quality level of configuration
management that uses instances, user queries and the web to identify undesirable
situations and therefore guarantee the ontology evolution on the conceptualization,
without affecting the intended model defined by the ontology engineer. Few studies
explicitly examine approaches using ontologies in real environments. However,
working with statistics of its use, we could analyze features that would affect their use
or even would evolve it over time when it is taking dimensions that do not allow the
engineers to pay attention to every detail.

 Within this context, we define in our project autonomic ontology as an ontology
that encompasses the knowledge represented and also guidelines for capturing and
analyzing data related to their use and, planning and execution of behaviors to ontology
evolution that leads to an optimal configuration based on the represented knowledge,
on existing concepts instances and user queries performance.

 Likewise, we present a repository that will support the lifecycle of the ontology
from creation to evolution, focusing developing semi-automated ontology evolution to
determine the side effects of any development or use of ontology. Always aiming to
preserve the intended model already specified by the ontology engineer, but systematize
the process of monitoring, analysis, planning and execution of adaptive actions. For this
repository will give the name Onto-CHOP.

2. Autonomic Framework for Web Knowledge Representation
Since the manual ontologies construction requires a huge human effort, the acquisition
of which is considered a bottleneck for the Semantic Web [Omelayenko 2001].
Furthermore, it is difficult to maintain, where small ontologies cannot be representative
and the bigger can be complex enough to difficult its re-use. In this paper, maintenance
involves ontology enrichment or tuning through an autonomic action on the vocabulary
(taxonomy), which is representing web documents.

 Below, we describe a repository with autonomic feature to evolve domain
ontologies through indexed web documents and user queries performed on them. It will
allow self-management of domain ontologies to treat the dynamism of the web
environment by identifying events that demands ontologies fragmentation action. The
monitoring of events is associated with ontology evolution to reduce the need for
human intervention and are identified through ontology-based metrics already defined
in the literature. On the other hand, the action patterns have been specified in this
research aiming to use metrics to define guard expressions to guarantee autonomic
actions performed on the conceptualization without affecting the intended model of the
ontology. Notice that ontology engineers remain responsible for auditing the autonomic
actions, confirming or revoking the evolution proposed for the domain ontology.

 To achieve this, the first step was to define the categories of metrics that will be
monitored by the repository. Any changes in metrics values of ontologies are detected
and reported to the module responsible for analyzing this event. Event in this research is
defined as any change in metrics values specified in the ontology repository. The
metrics currently used are into three (3) categories: Natural Language Application,
Taxonomic Structure and Instance Structure.

 For the metrics related to the need for ontology fragmentation are created guard
expressions, that are defined to values that trigger autonomic action of Fragmentation.
The figure below shows an example where some metrics have guard expressions
triggred represent by a (x) on the columns: Configuration (C), Healing (H),
Optimization (O) and/or Protection (P). More than one expression can be defined for
each metric.

Figure 1. Guard expressions for metrics: ‘x’ means expressions triggered and

‘v’ metrics values in accordance

 Therefore, when a set actions are triggered after an event, a planning may be
build to define the execution script of this actions avoiding endless shots and
unexpected results for the evolution of ontology.

 The challenge related to the capture, modeling, storage and monitoring events
justifies the need for an appropriate architecture for this purpose. The system
architecture was developed using the approach of autonomic computing to provide
capacity for self-management, hiding from the user complexity of programming and
providing a system that works 24 / 7 [Huebscher and McCann 2008], [IBM 2005],
[Kephart and Chess 2003], [Miller 2005].

Figure 2. Framework Architecture

 The figure 2 shows the architecture with the following four modules and a brief
description, which will be detailed in the next section:

• Monitor has sensors that detect events in domain ontologies. We defined as an
event any changes related to user queries, new web documents associated on the
ontology and manual evolution performed by the ontology engineer. When an event is
identified, the framework recalculates the metrics and publishes the changes to the
Analyzer module.

• Analyzer has active rules to verify guard expression that are activated after the
occurrence of correspondent event. Every guard expression is associated with
autonomic action.

• Planner is responsible to orchestrate multiple expressions triggered simultaneously
to avoid endless shots and unexpected results.

• Executor manages the action patterns specified by the framework and executes one
when requested by the Planner, generating the expected result for ontology evolution
(with intervention of the ontology engineer).

 For communication between the modules the blackboard approach is used for
modules register all the ontologies events. Blackboard is defined as an area of
knowledge where loosely coupled entities share information [Shaw and Garlan 1996].
In the next section we present the autonomic actions in the form of standard to facilitate
understanding.

3.1. Monitoring: methodology to capture metrics

[Gomez-Perez 1998] distinguished the following stages on the construction of
ontologies: knowledge acquisition, requirements specification, conceptualization,
implementation, evaluation and documentation. The monitoring is related to the

ongoing evaluation of the ontology using metrics that can be monitored and precursor
of actions. The edition, manipulation (for semantic annotation or instantiation) and user
queries are monitored by the framework from the moment that ontologies are published
and made available on the Web.

Nevertheless, there is no framework available in the literature to determine the quality
of domain ontologies. However, many criteria have been proposed and the most
accepted is the set of criteria presented in [Gruber 1993] and cited also in [Geert 2000].

The monitor module is one that is aware of events on the ontologies, recalculating the
metrics and reporting when any values changes. The quality metrics consolidated in the
literature and presented in the framework are divided into three (3) categories:
Intentional Size, Taxonomic Structure and Natural Language Application.

The Natural Language Application category provides metrics to determine whether or
not the results of ontology content mining, capture most of the notions of the input text
by using a number of metrics. Seven measures have been defined that should express
how well the resulting triples lexically represent the important notions of the application
domain:

• Precision: The intersection of the words of the triples and the related words divided
by the number of words of the triples.

• Recall: Measures the ratio between the number of items correctly identified and the
total number of correct items.

• Coverage: The average of the overlap between the vocabulary of the triples and the
input text for each frequency class.

• Accuracy: The intersection of the words of the triples and the related words divided
by the number of relevant words.

• Cost-Based Evaluation (CBE): An alternative method to obtain a low level to
measure performance.

• Lexical Comparison Level: Method to compare two words by the smallest number
of insertions, deletions and substitutions.

The Taxonomic Structure category evaluates the structure of the ontology:

• Width: Average number of subclasses per class.

• Depth: Measure the ration between the total of concept and the width.

• Specificity: The ration between the Width and Depth

Finally, the Intentional Size category evaluates the instances of ontologies through its
distribution on them:

• Class Richness: This metric is related to the distribution of instances between
classes. Where the number of classes that have instances is compared with the total of
classes defined in the schema. The result is the percentage indicating how classes
wealthy in the ontology are.

• Average Population: This metric compares the number of instances by the number
of classes.

• Importance: Quantifies instances that belong to a class in a sub-tree, aiming to
identify, which areas of the scheme are in focus when the instances are extracted,
assessing the distribution of instances for classes. The importance of a class Ci is
defined by the number of instances that belong to sub-trees that have Ci as the root,
compared with the total number of instances.

• Completeness: The completeness is defined by the current number of instances that
belong to subtrees that have root Ci as compared with the expected number of instances
for the sub-trees that have Ci as root. The result is the percentage of instances
compared with expected coverage in the ontology instances.

Whereas this metrics was defined, the framework may monitor them and report any
change that occurs in their values to other modules through the blackboard to determine
whether the new value trigger an action.

3.2. Analysis: methodology for quality assessment

The metrics are associated with values through the logical operator to build a condition
that works as a guard expression for the metric and triggers an autonomic action. An
action is defined as an intervention in the ontology to modify the value of a particular
metric through ontology evolution (with intervention of the ontology engineer). Notice
that we do not use explicitly the Event-Condition-Action (ECA) nomenclature, because
the characteristics of our framework are closer to expert systems paradigm. Likewise,
its behavior presented is the same as in active rules and implemented with Jess, which is
based on C Language Integrated Production System (CLIPS) [CLIPS 2009].

 The Analyzer module is responsible to evaluate any change in the values of
ontological metrics identified by the Monitor module and available through the data
sharing area called blackboard. Also, the Analyzer module maintains a database with
the rules and its correspondent actions that must be triggered when the condition of the
rule is satisfied by ontologies metric. Notice that all triggered actions will be forwarded
to the Planner module before been executed in order to be orchestrated, avoiding
endless shots and unexpected results.

 The ontology evolution occurred through the Fragmentation Action that is
triggered to treat three events: (1) overloading of concepts with lots of instances or
indexed Web documents, (2) low query performance and (3) inefficient representation
of Web knowledge by the domain ontologies. For the first case, guard expressions are
created with metrics Average Population - eAvCnt (C) and Class Richness - eMaxCnt
(C) from Intentional Size Category that trigger an action when at least one ontology
concept has two (2) times instances more than the overall ontology concepts. These
guard expressions identify the concept concerned and the ontology scenario to know
where to act with fragmentation.

Figure 3. Active Rule in Jess

In the figure 3, we can see that when the rule is triggered, the action is saved in the
blackboard (via the ‘save-problem’ function) and consequently the Planner module will
be aware of this fact.

 On the other hand, the low performance of queries is addressed with a guard
expression of the ‘Cost-Based Evaluation’ from the Natural Language Application
category. The figure 4 shows an expression guard that is triggered when a query reaches
a maximum time for processing defined by the framework to treat a Healing action
through Fragmentation pattern.

Figure 4. Active Rule to low performance of user queries

Nonetheless, only a few guard expressions are pre-configured and enabled in the
framework for autonomic action. The ontology engineer can specify and enable new
guard expressions.

 For the third case, the autonomic action to represent and process Web document
is executed when the documents indexed by the domain ontology do not have their
knowledge represented in a satisfactory manner in accordance with the set of metrics
from Natural Language Application category.

Figure 5. Active Rule to Precision Metric

In the figure 5, we can see that when the rule is triggered, the action is saved in the
blackboard (via the save-problem function), and consequently the Planner module
planner will be aware of this fact.

3.3. Planner: orchestrating the actions

The evolution of domain ontology occurred through the Autonomic Fragmentation
Action that is performed when quality metrics evaluated and monitored reaches
undesirable levels that was pre-defined. Below, we formalize the action to facilitate the
design, analysis and correction of some module that do not work perfectly.

Motivation

There is a scenario where the ontology has few concepts with many of the instances or
generalizes a knowledge in which they are representing. This scenario may point to a
necessity for defining new concepts from these ontology’s centralizing concepts.
Likewise, ontologies with this scenario may have low performance of their queries
when these concepts or their instances are accessed.

Applicability

In a dynamic environment like the Web, where we want to semantically annotate Web
documents, the ontology must evolve with the creation of new concepts to avoid
overload in those who are concentrating great part of the instances. This scenario points
to a protection action with the specialization of concepts and distribution of their
instances. Guard expressions are built to the following metrics: Importance (instances
distribution), Class Richness (concepts and their instances) and Cost-Based Evaluation
(CBE -to measure performance). These metrics will be presented in the next section.

Model

The fragmentation action is triggered when a guard expression associated with it and
controlled by the Analyzer module is enabled. When this occurs, the action uses the
External Repository that contain the metrics and the current location of the ontology,
the internal Repository that maintain the metrics that must be addressed by the concepts
involved on the Fragmentation, the Function name to be used in action and where the
evolved ontology will stored before engineer validation.

Upon receiving an event initiator of the fragmentation action, the first step is to identify
the ontology concept to be fragmented (IDENTIFY CONCEPT ONTOLOGY). After,
the extraction of domain vocabulary is performed on the summary of Web documents
collection associated with the concept to be fragmented (GET IDF). The IDF (inverse
document frequency) is retrieved from the Semantic Annotation repository that is
populated before any autonomic action (see section 4.4). In the next step (GET MORE
FREQUENT TERMS) we retrieve the most frequent terms (the minimum value pre-

defined by the ontology engineer), which will be the candidates terms for the ontology.
In possession of these terms, the next step (IDENTIFY RELATIONS) is the
identification of relations between the candidate terms in the documents collection. This
step uses taxonomy of natural language (WordNet) [Miller 1995] and the domain
ontology. On the next step the taxonomy built with candidate term and the relations
identified is showed for the ontology engineer responsible for integrating this with the
domain ontology (WAIT APROVALE). After the engineer finalize the manual
integration, the last step (PERFORM SEMANTIC ANNOTATION) is executed to
perform semantic annotation up on the documents previously associated with the
concept(s) fragmented (s), since that can be replaced by the candidate terms.

Indeed, if the engineer has done some integration between the domain ontology and
taxonomy extracted autonomically, we can deem the ontology suffered concepts
fragmentation action.

3.4. Executor: autonomic actions modeling

As ontology is the specification of conceptualization [Gruber 1993] and we want
evolves it, thus we have to guarantee the accuracy in evolve the conceptualization
[Guarino 1998] through ensuring that development occurs on the conceptualization, but
that the intended model remains as the original. In other words, we must keep the focus
on relevant conceptual relationships to a specific context, in this case, the Web
documents that are being represented.

For this, the Executor module is responsible for ontology changes presented by Planner
module. The Executor receives as input the default action, performs the action on the
ontology and finally generates a label with the new version of it. This, however, has the
annotation semantic action as a preliminary step, in which associate web documents to
the domain ontologies.

The Web documents have knowledge about a domain that is represented in the ontology
and has the document content indexed for future user queries. From this point, we
identify the need for ontology evolves either by creating new concepts and new
meanings to existing concepts. The semantic annotation proposed here analyzes the
content and index on the proposed framework as a way to provide semantics to the
documents without these be aware of this and even been modify. Which we consider an
annotation "top down", which is different of annotation manual, known in the literature,
where the user inserts annotation with a markup (tag) language in the pages using an
ontology (or vocabulary) to give semantic to the Web document.

The semantic notation is presented in the figure 6, where Web documents defined by the
user are crawled and persisted on the ontologies repository to provide semantic to them
and allow domain analysis and domain ontology evolution.

Figure 6. Semantic Annotation Methodology

On the first step, the COPCrawler (Pacheco, 2010) crawler the Web documents from
URLs specified by the user and persists them in the database. After, the document
content is processed, eliminating advertising and other links, and finally summarize the
content to capture only the terms already in the domain ontology and future candidates
terms for the ontology concept. The search for candidate terms in the document content
implies a syntactic analysis of sentences. For this operation, the first step is to define a
context for each document that is formed by the concepts that exist in the ontology and
are present in the document, regardless of syntactic functions they perform. The second
step is to define the candidates terms as those 10 (ten) words that occur before and after
the words belonging to the context.

Follow the figure 6, the step 2 uses the vector model (TF-IDF) from Lucene [Lucene
2009] to calculate the similarity between Web documents persisted in the database by
the crawler. With this step we want to ensure minimal accuracy between the documents
and the domain. The documents are represented using values of terms absolute
frequency based on expression reduced to the terms considered "important" by
measures of information retrieval, eliminating the most and least frequent terms. Thus,
based on this input, each document is represented by a vector of concepts and the
frequency with which concept occurs in the document. After, the similarity value is
defined between each document with the ontology vocabulary represented by the
metadata name and description of the ontology concepts. The following formula (figure
7) corresponds to the cosine distance between the metadata words set q and each
document dj. The value Sim(dj, q) allows to cluster the documents by the similarity
feature.

Figure 7. Similarity measurement between two vectors

In step 3, the Classifier module applies the Jaccard Similarity Coefficient [Jaccard
2009] to determine the similarity between the Web documents persisted and the
ontology concepts to define the domain vocabulary used in the text content and
therefore, provide a semantic annotation to the document. The similarity is checked by
comparing the entire meta-data ontology concept with the text content of the web
document, generating a value between 0-1. Thus, we generate a database associating
each Web document to concepts with a minimal value of similarity defined by the
framework.

In the last step 4, from the base created in step 3, for each web document is created an
instance on the associated ontology concept. So after the semantic annotation, the
autonomic actions are able to run.

5. Preliminary Results
This section presents a brief case study to demonstrate how the architecture works. The
example used in this paper is adapted from Brazilian Social Security ontology that
represents the vocabulary and some business rules related to benefits granting for
citizen retirement.

As explained in section 2, the domain ontology must be made available in the
framework and the desirable values for the metrics configured by the ontology engineer
as shown in figure 8. In this example, we can observe that the Average Population
metric related to Fragmentation action was enable to perform as a Healing when
identify a concept with more than 90% of instances. Or as a Protection when identify a
concept with between 50% and 60% of ontology instances.

Figure 8. Average Population metric configuration

After, the ontology engineer may inform the URL of Web documents to be semantically
annotated. In our case, the URL came from Intranet and Internet sites available by
Brazilian Social Security. The ontology is defined in the Portuguese language, has 352
concepts defined and 18 object property for the business rules. The idea is to have the
knowledge represented on the ontology available to technicians and the Brazilian
citizens. Nonetheless, the Web documents are always growing and being modified due
to the constant changes in benefits granting for citizen retirement, which is very
common in Brazil. One example is the current debate in Congress by the end of Social
Security Factor concept that was created with the aim of reducing the value of pension
benefits at the time of grant, so inversely proportional to the retirement age of the
insured.

In this case study, we used an early version of the ontology with the basic concepts
considered to benefit: Allowance, Pension, Retirement, Help and Annuities. The
objective is the identification by the autonomic ontology evolution of these concepts
that are overloaded.

Figure 9. Exemple of a concept with 59% of the instance which trigger the

protection rule

After that, as expected, the figure 9 depicts the scenario where there is a concept with
59% of the instance which trigger the protection rule that monitors values between .50
and .60 as shown in figure 9. Finally, it is up to the ontology engineer access this flag,
see the fragmentation of autonomic action framework to consolidate the ontology
evolution, since this is not done automatically.

Our document corpus has been crawled from a WWW provider for Brazilian Social
Security (URL: http://www.previdencia.gov.br) and (http://www-dtpnet) consisting
about of 1800 HTML documents with a total sum of over 1.2 million words.

The Fragmentation action identified 78 new concepts for the five concepts mentioned
above. One example is the figure 10, where seven new types were identified for the
Saving (Pecúlio, in Portuguese) Benefits.

Figure 10. Seven new types were identified for the Saving (Pecúlio, in

Portuguese) Benefits.

6. Conclusions and Future Works
This paper proposes a repository for domain ontologies that encompasses guidelines for
capturing and analyzing data related to their use and also, planning and execution of
behaviors to ontology evolution that leads to an optimal configuration based on the
represented knowledge, on existing concepts instances and user queries performance.
The proposed autonomic ontology repository has shown to be simple, yet powerful.
However, we do know that challenges still exist regarding:

• Action quality, since, as an autonomic system, it should be able to distinguish
trustworthy from untrustworthy action;

• Analysis of web content indexed in the ontology;

• Summarization through autonomic aggregation of content in heterogeneous format

• Specification of new action patterns related to other metrics defined in the
literature.

One future work is the development of a Context-Sensitive Search based on the content
web documents analyzed. Another future work is allow navigation through Web
documents by the domain ontology, deeming the correlation of documents already
defined with the Vector Model (TF-IDF) approach from Lucene [Lucene 2009] to
calculate the similarity between Web documents.

A future target is the integration with Formal Ontology to establish formal meanings for
domain vocabulary allowing axiomatization and integration of domain ontologies from
different sources. We notice that domain ontologies consist of specialized terminology
and a particular vision of reality. But the meaning remains dependent on the context.
The use of Formal Ontology to integrate the domain ontology can promote the reuse,
integration and management through the construction of ontologies from web
documents.

References
Alani, H. and Brewster, C. (2005) “Ontology ranking based on the analysis of concept

structures,” Proceedings of the 3rd international conference on Knowledge capture,
Banff, Alberta, Canada: ACM, pp. 51-58.

Berners-Lee, T., Hendler, J. and Lassila, O. (2001) “The Semantic Web A new form of
Web content that is meaningful to computers will unleash a revolution of new
possibilities”.

CLIPS (2009) “http://clipsrules.sourceforge.net/” Acessed in august 22th 2009.

Geert, M.W.G. (2000) “The Ontological Foundation of REA Enterprise Information
Systems,” Ago.

Gomez-Perez, A. (1998) Knowledge sharing and reuse. In J. Liebowitz, ed., The
Handbook of Applied Expert Systems, CRC Press.

Gruber, T.R. (1993) “A translation approach to portable ontology specifications,”
Knowl. Acquis., vol. 5, pp. 199

Guarino, N. (1998)“Formal Ontology and Information Systems”. . In: Proceedings of
the international conference on Formal Ontology in Information Systems, pp. 3-15.

Guizzardi, G. (2005) “Ontological foundations for structural conceptual models”.
Doctoral Thesis.

Huebscher, M. C. and McCann, J.A. (2008) “A survey of autonomic computing—
degrees, models, and applications”, ACM Computing Surveys.

IBM (2005) “An architectural blueprint for autonomic computing”, Autonomic
Computing White Paper, Third Edition, June.

Jaccard (2009) “http://sourceforge.net/projects/simmetrics/” Acessed in august 22th.

Jess (2009) “http://www.jessrules.com/” Acessed in august 22th.

Kephart, J.O. and Chess, D.M. (2003) “The Vision of Autonomic Computing”, IBM
Thomas J. Watson Research Center.

Lucene, (2009) “http://lucene.apache.org/” Acessed in november 12th.

Maedche, A., Motik, B., Stojanovic, L., Studer, R. and Volz, R. (2003) “An
infrastructure for searching, reusing and evolving distributed ontologies,” WWW,
pp. 439–448.

Miller, G.A. (1995) “WordNet: A Lexical Database for English”. In Communication of
the ACM, vol. 38, pp. 39--41.

Miller, B. (2005) The autonomic computing edge: Can you CHOP up autonomic
computing? IBM Corporation.

Omelayenko, B. (2001)“Learning of Ontologies for the Web: the Analysis of Existent
Approaches,” Proceedings of the International Workshop on Web Dynamics, held in
conj. with the 8th International Conference on Database Theory (ICDT’01), London,
UK.

Shaw, M. and Garlan, D. (1996) Software Architecture: Perspectives on an Emerging
Discipline, Prentice Hall.

