
Fusion – Visually Exploring and Eliciting Relationships
in Linked Data

Samur Araujo1, Geert-Jan Houben1, Daniel Schwabe2, Jan Hidders1

1Delft University of Technology, PO Box 5031, 2600 GA Delft, the Netherlands
2PUC-Rio, Rua Marques de Sao Vicente, 225, Rio de Janeiro, Brazil

{s.f.cardosodearaujo, g.j.p.m.houben, a.j.h.hidders}@tudelft.nl

dschwabe@inf.puc-rio.br

Abstract. Building applications over Linked Data often requires a mapping
between the application model and the ontology underlying the source dataset
in the Linked Data cloud. This mapping can be defined in many ways. For
instance, by describing the application model as a view over the source dataset,
by giving mappings in the form of dependencies between the two datasets, or
by inference rules that infer the application model from the source dataset.
Explicitly formulating these mappings demands a comprehensive understanding
of the underlying schemas (RDF ontologies) of the source and target datasets.
This task can be supported by integrating the process of schema exploration
into the mapping process and help the application designer with finding the
implicit relationships that she wants to map. This paper describes Fusion - a
framework for closing the gap between the application model and the
underlying ontologies in the Linked Data cloud. Fusion simplifies the definition
of mappings by providing a visual user interface that integrates the exploratory
process and the mapping process. Its architecture allows the creation of new
applications through the extension of existing Linked Data sources with
additional data.

Keywords: semantic web, data interaction, data management, RDF mapping,
Linked Data

1 Introduction

Nowadays, the Linked Data1 cloud provides a new environment for building
applications where many datasets are available for consumption. Although data in this
cloud is ready to use, applications over the Linked Data cloud have currently an
intrinsic characteristic: they consume RDF2 data as it is, since designers are not able
to interfere with the data in the cloud. This fact raises an important issue concerning

1 Linked Data - http://linkeddata.org/
2 http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

the development of applications over Linked Data: how to fill the gap between the
ontology associated with the application model and the ontology used to represent the
underlying data from the Linked Data cloud? The main benefit of mapping these two
models is that then Linked Data can be accessed through properties defined in the
application model, which is more convenient for the designer, consequently
simplifying considerably the development and maintenance of the application.

Although a number of techniques can be applied for mapping two RDF models,
such as ontology matching, or inference rules, or views over RDF data, they often do
not take into account that expressing the mapping rules themselves is a separate
challenge, since in most cases Linked Data sources are represented using domain-
specific ontologies that do not explicitly offer all common properties in the domain.
Take for example DBLP3 Linked Data, one of the best-known bibliography
information sources available as Linked Data. Its ontology does not have an explicit
property that connects directly co-authors, a common property in this domain.
Although DBLP Linked Data contains paths that represent this relationship, it is not
trivial to find them. Indeed, it requires understanding the schema behind the data and
how this relationship is implicitly represented in this dataset. Similar examples can be
found in any dataset in the Linked Data cloud, where the required information is
implicitly encoded in the instance of data.

In this context, two specific and common scenarios often occur. The first is where
the designer needs to express a mapping between a property in her application model
(e.g. how a City is located in a Country) and a path in the RDF graph of the given
dataset (e.g. a City belongs to a Province which belongs to a Country). Another
example of this scenario can be given in the domain of government data. Suppose you
are building an application over the GovTrack.Us4 dataset and its application model
requires a property isSenatorOf that directly connects instances of the class Politician
to instances of the class State (e.g: Christopher Bond is a senator from Missouri).
However, this relationship is not explicitly represented in the GovTrack.Us ontology.
In order to obtain this relationship, the designer has to use the path Senator -> has
Role-> forOffice-> represents -> State which, in this RDF graph, represents the
relationship. Note that the designer needs a clear understanding of the GovTrack.Us
schema in order to find the corresponding path to be mapped. The second scenario
occurs when the mapping is in fact a computation over the existing data that produces
a new explicit data value. For instance, when a mapping is desired from a property
screen resolution from the application model to the concatenation of screen width and
screen height properties defined in the target dataset.

Note that in those scenarios for defining those mappings special attention should
be paid to the exploratory process, especially when it demands from the designer to
dive into the instances and the schema of the source dataset in order to find implicit
relationships, which is not a straightforward task at all. Some authors have shown that
visual exploration [1, 9] can help users to understand an unknown schema used to
represent a known domain. Although those mechanisms help users to query an
unknown schema, it will be always easier to explore a schema that is closer to the
application models, often expressed in an upper ontology [11]. Although many tools

3 http://dblp.l3s.de/d2r/
4 http://www.govtrack.us/

are available for exploring Linked Data and for expressing mapping rules between
RDF models, there is still a lack of tools that integrate these processes.

This paper presents Fusion5, a lightweight framework to support application
designers in building applications over Linked Data. It supports designers in mapping
the ontology of the used Linked Data sources to their application model by integrating
the process of exploration of the target schema with the task of expressing a mapping
rule itself. Fusion features a visual user interface that guides the designer in the
process of specifying a mapping rule. It uses a standard RDF query language and
allows Linked Data to be accessed using properties defined in the application model,
consequently simplifying the use of Linked Data in a specific context.

The remainder of this paper is organized as follows. Section 2 presents relevant
related work. Section 3 describes how Fusion supports the designer in deriving rules;
while Section 4 describes Fusion’s architecture. Section 5 presents some examples
and how Fusion solves the problem of enriching access to Linked Data with
application model properties. Finally, Section 6 presents the conclusion of this work.

2 Related Work

2.1 Ontology Mapping

The problem of mapping data models can also be conceived as an ontology-mapping
problem, since it encompasses describing existing data in another vocabulary. In [8] a
SPARQL extension is proposed to achieve that. Their solution merges SPARQL++
[3] and PSPARQL [9], two extension of the SPARQL specification. The first
extension adds some functions for enabling SPARQL to translate one vocabulary to
another by just using SPARQL CONSTRUCT. The second one adds path expressions
to SPARQL, allowing a better navigation through the graph. Together they empower
the SPARQL language to perform ontology mapping over two or more ontologies.
Although the theory is given, the authors do not provide a concrete implementation
especially because the proposed primitives have many implications for the
performance of the query over the distributed environment of Linked Data.

2.2 SPARQL Construct Queries and its Extensions

Another way to solve the problem of mapping RDF datasets is by specifying a
CONSTRUCT query in SPARQL [2] that derives the triples in the target data set from
the source data set. The resulting graph can then be stored in an arbitrary RDF
repository. However, the CONSTRUCT query has limited expressive power, since
some computation over the original RDF triples cannot be done, such as string
manipulation and aggregation. For instance, using this directive it is not possible to

5 http://www.wis.ewi.tudelft.nl/index.php/fusion

generate the triple that would represent the mapping between a property screen width
and screen height (shown in the Fig. 1) to a property resolution (shown in Fig. 2) that
is their simple concatenation.

<http://sw.tv.com/id/2660> <http://sw.tv.com/screen_width> "128" .
<http://sw.tv.com/id/2660> <http://sw.tv.com/screen_height> "160" .

Fig.1 – A resource with predicates screen width and screen height.

<http://sw.tv.com/id/2660> <http://sw.tv.com/resolution> "128x160" .

Fig.2 – A resource with predicate resolution.

Polleres et al. [3] have proposed an extension of CONSTRUCT that overcomes
such limitations, however this extension is limited to a specific RDF query engine that
implements this SPARQL extension. Therefore, at this moment, such a solution is not
feasible for the Semantic Web environment, which is very diverse in terms of query
engines, and the majority of the data is stored in repositories that only implement the
standard SPARQL specification.

2.3 Views over RDF Data

Another way to specify mappings between different representational models is by
defining views [5, 6, 7]. This concept is well known in the field of database theory,
and can be used to aggregate, enrich and personalize data. A view is a query
accessible as a virtual table composed of the result of the query. Although views are
frequently used in the relational databases, building views over Linked Data presents
many additional challenges. Issues such as view maintenance (including updates) and
querying over virtual (non-materialized) views in the distributed environment of
Linked Data are still open problems, besides several others performance issues that
arise.

Volz et al. [4] have proposed a language based on RQL [5] for specifying views
over RDF data. It defines two kinds of views: views over RDF classes and views of
RDF properties. Although this proposal presents a complex specification of views
over RDF, it cannot solve the simple scenario described in Section 2.2, and its
solution is based on RQL, which is not the standard RDF query language used
nowadays. Magkanaraki et al. [7] have proposed a view specification language over
RDF, also based on RQL. Its processing model is based on materialized views. Chen
et al. [6] present a scenario of accessing relational data using RDF views. In their
approach a query over a view result in query rewriting that exploits the semantics of
RDF primitives, such as, subPropertyOf or subClassOf. While their approach enriches
the access to the relational data, it does not cover the transformations over the data
that we are considering here, moreover it is focused on mapping relational schema to
an RDF/S ontology.

2.4 SWRL6 Rules

Hassanpour et. al [13] proposes a tool for supporting the user on creating SWRL
rules. Their tool contains a visual interface that guides the user on visualizing,
managing and eliciting SWRL. Although this tool can be used to map two model
using SWRL rules, it does not integrate the process of specifying the rules with the
process of exploring an unknown schema, which is the main aim of Fusion.

2.5 RDF Exploration

RelFinder [1] is a visual tool for finding n-ary relationships between RDF resources.
It contains a visual interface that allows the user to visualize the relationship in a
directed graph layout. Basically, RelFinder issues a set of queries against a specific
SPARQL endpoint in order to find relationships between two or more RDF resources.
Its algorithm is configurable and allows, among other features, to ignore structural
relations (e.g. rdf:type), cycles and certain objects and properties. RelFinder aims to
be a better mechanism for finding relationships among data than any other
exploratory mechanism. Explorator [9] is another tool that aims to facilitate the
querying of instances of an unknown RDF schema, consequently allowing the user to
discover relations between data instances even without previous knowledge of the
domain. These tools re-enforce the idea that accessing RDF data is not a trivial task
and demands a complex exploratory model behind it, and in spite of the fact that they
support users in finding relationships between data they do not solve the problem of
accessing the Linked Data through a schema associated with the application model.

2.6 Interlinking

From an operational point of view the mapping of two RDF models can be perceived
as the addition of new triples to the original dataset for any new relationship
expressed in the target ontology. Clearly this task requires some sort of automation.
For instance, Silk [10] is a linking framework for discovering relationships between
data items within different Linked Data sources. By specifying rules, the application
designer can define how two distinct sets of resources, possibly belonging to distinct
endpoints, can be interlinked, and as a result it produces a graph with all discovered
connections. Although Silk automates the process of interlinking resources, Fusion
goes one step further, since it supports also the process of specifying the rule. Another
difference between Silk and Fusion is that Silk focuses on interlinking two distinct
RDF repositories, while Fusion focuses on extending relationships within a single
RDF repository. They solve two different problems: Silk interlinks two disconnected
RDF graphs while Fusion extends the knowledge for a single graph.

6 http://www.w3.org/Submission/SWRL/

3 Discovering and Deriving RDF Relationships

The main aim of Fusion is to help the designer in discovering relationships in RDF
graphs that exist in the Linked Data cloud and specifying rules for the derivation of
new properties for these relationships. In this paper we refer to this process as
relationship derivation. The result of the relationship derivation process is a set of
rules that each produces RDF triples based on queries over an existing RDF graph.
The evaluation of a rule results in a set of triples that each contains either a new object
property7 that links a resource to a resource, or a new datatype property that links a
resource to a data value. In the cases where it results in a new object property, the
triples produced connect existing resources, while in the case where it derives a new
datatype property the triples produced connect existing resources with values
computed by a function over the RDF graph being queried. In the remainder of this
section we describe how Fusion supports the designer in specifying these derivation
rules.

3.1 Deriving Object Property Relationships

The main issue regarding the derivation of new object property relationship is to
specify the correspondence between resources. For example, if a user wants to create
a new object property locatedIn that directly connects cities to their respective
countries, she needs to specify the relationship between cities and countries in the
existing data, i.e. which cities are located in which country. Such a correspondence
can be obtained by following a certain path between two resources in the RDF graph
of the source dataset. For example, Fig. 3 shows a sub-graph of Geonames Linked
Data8 that represents a path between the resource of the city of Delft
(http://sws.geonames.org/2757345/) and that of the country The Netherlands
(http://sws.geonames.org/2750405/). By using the predicates in this example path and
generalizing the intermediate nodes, it is possible to generalize such an example
correspondence to apply to all cities and countries in this dataset, and thus bring the
correspondence to the class level. By exploiting this resulting path, Fusion can map
all cities to their corresponding country and thereby add a new object property to the
original graph. Note that this process maps a newly added relationship that is defined
in the application model, to an implicit relationship that exists in the original graph. In
the example above, the object property locatedIn defined in an application model
could be mapped to the generalization of the path between Delft and the Netherlands
geo:parentFeature Province of Zuid-Holland geo:parentFeature.

7 http://www.w3.org/TR/owl-ref/#ObjectProperty-def
8 http://www.geonames.org/ontology/

Fig. 3 – A path between the resources Delft and Netherlands in Geonames Linked Data

3.1.1 A Path Discovery Algorithm

The first step in the mapping process is to find the paths that potentially could be used
in the mapping. Fusion automates this step by eliciting all possible paths in an RDF
graph that connect two example RDF resources (e.g. Delft and the Netherlands, or a
Senator and a State.) that have a specific maximum length. Thus, finding the
relationship between two RDF resources becomes finding a path in the RDF graph
that would allow navigating from the one resource to the other one. This process can
be implemented as a modified version of the breadth-first search algorithm (BFS)
with a maximum limit on the depth of the search and without the restriction that it
should stop when the goal node is reached. Consequently, it can be used to retrieve all
paths in the graph within a maximum length from the source to the target node. This
algorithm is applied to the RDF graph by interpreting each triple as an undirected
edge between its subject and object. Since this algorithm is a small variation on the
standard BFS and retrieves all possible paths from a to b of length d, its complexity is
O(cd), where c is the maximum branching factor in the graph. This asymptotic
complexity is in this case the theoretical optimum since it describes the size of the
output.

3.1.2 Implementing the Path Discovery Algorithm over a SPARQL Endpoint

Considering that Fusion searches for paths in a Linked Data dataset, the path
discovery algorithm needs to be implemented as a set of SPARQL queries, since the
only way to access an RDF graph in the Linked Data cloud is by issuing SPARQL
queries over its remote SPARQL endpoint. In order to generate these queries we
consider the RDF graph as an undirected graph as previously described. Thus, all
paths with length n from node a to node b in this graph can be obtained with a set of
SPARQL queries containing 2n queries. Since we want to ignore the direction in the
graph, we issue a distinct graph pattern for all possible choices of direction for each
triple pattern in the path. Each query in this set contains n connected triple patterns,

one for each edge in the path. For example, for obtaining all paths between a and b
with length 3, 8 (= 23) graph patterns each containing 3 triple patterns are generated.
Fig. 5 shows all these 8 patterns.

1 (:a,:p1,:a2),(:a2,:p2,:a3),(:a3,:p3,:b)
2 (:a2,:p1,:a),(:a2,:p2,:a3),(:a3,:p3,:b)
3 (:a,:p1,:a2),(:a3,:p2,:a2),(:a3,:p3,:b)
4 (:a2,:p1,:a),(:a3,:p2,:a2),(:a3,:p3,:b)
5 (:a,:p1,:a2),(:a2,:p2,:a3),(:b,:p3,:a3)
6 (:a2,:p1,:a),(:a2,:p2,:a3),(:b,:p3,:a3)
7 (:a,:p1,:a2),(:a3,:p2,:a2),(:b,:p3,:a3)
8 (:a2,:p1,:a),(:a3,:p2,:a2),(:b,:p3,:a3)

Fig. 5 – Graph patterns generated for path length 3.

Each of these patterns will be transformed into a single SPARQL query, as shown

in Fig. 6 for pattern 1 from Fig. 5, where a and b were specified as the resource
Christopher Bond (http://www.rdfabout.com/rdf/usgov/congress/people/B000611)
and the resource Missouri (http://www.rdfabout.com/rdf/usgov/geo/us/mo.),
respectively. In this example, the path connects the US politician Christopher Bond
with the state (Missouri) that he represents.

PREFIX Geo: <http://www.rdfabout.com/rdf/usgov/geo/us/>
PREFIX Gov:
<http://www.rdfabout.com/rdf/usgov/congress/people>
SELECT DISTINCT ?p1 ?a2 ?p2 ?a3 ?p3
WHERE {

Gov:B000611 ?p1 ?a2 .
?a2 ?p2 ?a3 .
?a3 ?p3 Geo:mo .

}

Fig. 6 – Query performed for graph pattern 1 from the Fig. 5.

Thus, when all graph patterns are executed, all paths of length n are retrieved. Fig.
7 shows a sample path found as result of the query from Fig. 6 being issued over the
GovTrack.Us endpoint.

Fig. 7– A sample path found between the resources Christopher Bond (a senator) and Missouri
(a US state) in the GovTrack.Us dataset.

This algorithm is quite similar to RelFinder’s, however its algorithm considers the
RDF graph as a directed graph and it searches only for 4 graph patterns, which does
not cover all possible paths between a and b.

3.1.3 Derivation Process

The algorithm described previously is used in the first stage of the derivation process.
The complete derivation process ends with the designer choosing one of the paths
found in the first stage and applying it to find correspondences between two broader
(more general) sets of resources. As a result of this procedure, a derivation rule is then
produced.

In order to apply the chosen path to a broader set of resource pairs the designer
needs to generalize all nodes in the path. For instance, the path in Fig. 8 shows a
generalization of the path in Fig. 7 that considers all sources and targets (their
generalization is indicated by the ?) that are connected through the path hasRole
R1 (blank node) forOffice Senators for MO represents, i.e., it will find the
correspondence between all senators and the state of Missouri.

Fig. 8 – A possible generalization between senator resources and the Missouri resource.

Fig. 9 shows another (more general) generalization that can find the
correspondence between all senators and the respective state that they represent, since
now all intermediate nodes are variables.

Fig. 9 – A possible generalization between senator resources and the respective US state that
they represent.

Observe how the predicates in the path are not generalized and remain fixed. These

generalizations define derivation rules, which select the resources that will be
interconnected.

 For the designer to control this generalization process, we provide a graphical user
interface that will be shown later.

3.2 Deriving New Datatype Properties

Fusion also supports application designers with extending the original dataset with
datatype properties. As Fusion’s goal is to allow application designers to map a
property in their application model to an existing Linked Data dataset, the values of
the new datatype properties are computed over the existing values in the original
dataset.

Formally, a derivation rule that produces datatype properties is defined by a tuple
(q, p, f) with a query q, a predicate name p, and a function f. The query q defines a
function that maps an RDF graph to a set of URIs in that graph, which defines the set
of resources for which the new datatype property is defined. The predicate name p
defines the predicate name of the new property. Finally the function f maps an RDF
graph and a particular URI within that graph to an RDF value. The result of applying
such a rule to an RDF graph G is the addition of all tuples (s, p, o) such that s ∈ q(G)
and o = f(G, s).

4 Architecture Overview

Fusion architecture provides a complete environment to specify and execute a
derivation rule. An overview of Fusion’s architecture is shown in Fig. 10. The
specification of the rules is supported in Fusion’s user interface that will be explained
further in the section 5. Fusion server engine is responsible for executing the
derivation rule itself. During the process of executing of a rule, it queries a source
endpoint in the Linked Data, process the result, and produces a set of new triples that
will be added to Fusion repository. Any RDF data store can be used as Fusion
repository. Currently, Fusion implements adapters for Sesame9 and Virtuoso10 data
stores, although other adapters can be easily added to its architecture. All derived
triples in Fusion contains as subject a resource that belongs to the queried dataset, so
the derived data is intrinsically interlinked with the Linked Data cloud. For this
reason, a query over a federation of endpoints, that includes the Fusion repository
endpoint, will allow the designer to have a view over the Linked Data that also
includes the properties defined in her application model.

Although Fusion does not serialize a rule before executing it, any serialization
mechanism could be used in its architecture. For example, its rules could be serialized
as inference rules, by using Spin Inference Notation11, which contains a collection of
RDF vocabularies enabling the use of SPARQL to define constraints and inference
rules on Semantic Web models. Although this configuration is theoretically possible,
executing inference rules, or even instantiating a virtual view, over the Linked Data is
still an open problem, since it raises many performance issues. Such issues do not
occur in the Fusion architecture because it materializes the result of the rules as new
triples in the Fusion repository. The performance of querying data that is already

9 http://www.openrdf.org/
10 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
11 http://www.spinrdf.org/

materialized is always faster than query data that needs to be processed at runtime.
The main drawback with materializing the result of the rules is that once the original
source is updated, the rules have to be executed again; moreover to detect these
changes in the Linked Data is not trivial. In spite of this is an interesting problem it is
not the focus of Fusion.

Fig. 10 – Fusion’s architecture overview.

Fusion is implemented in Ruby on Rails12 as a web application. Fusion uses the
ActiveRDF API [12] that allows an RDF graph to be accessed in the object-oriented
paradigm. By using this API the properties of an RDF resource can be accessed as an
attribute of its corresponding object. For instance, the predicate
http://www.geonames.org/ontology#population can be accessed as
resource.population. This architecture allows the designer to write complex functions
for computing a new datatype property value using the full power of the Ruby
language, which cannot be achieved simply by using the SPARQL language.

5 Examples of Use

This section describes two concrete scenarios that illustrate the use of Fusion to create
an application by extending Linked Data sources with additional properties.

5.1 Scenario 1 – Adding the isSenatorOf object property to GovTrack.Us
Linked Data

In this example, we suppose that the designer wants to establish the relationship
between US senators and the US state that they represent. Therefore she needs to
construct a derivation rule that will find and define such a correspondence between
politicians and states in the GovTrack.Us’s Linked Data. In the first step in the

12 http://rubyonrails.org/

process, the designer provides an example of two resources in GovTrack.Us that she
knows in advance that are actually related, for instance, the politician Christopher
Bond and the state Missouri. Also, she needs to declare the GovTrack.Us endpoint to
be queried and the maximum depth of the path. This step is shown in Fig. 11.

Fig. 11 – Fusion’s interface for finding a path between two known resources

As the result of this first step, Fusion shows all the paths that connect these two
example resources satisfying the maximum path length. This result is shown in Fig.
12. In this example, the paths found have a maximum length of 3.

Fig. 12 – Fusion’s interface showing the discovered paths.

In this view, the designer can now look for the path that has the intended semantics.
Note that with this view the tool assists the designer in this discovery process, since
she does not need to query the schema manually in order to find these paths. The first
path shown in Fig. 12 indicates that the politician Christopher Bond has a role as
senator representing the state Missouri, and in our example case the designer can now
infer that this is an instance of the path that she is looking for. After this conclusion,
the designer chooses that instance to be the template for the rule.

Fig. 13 – Generalizing the path for the property isSenatorOf in GovTrack.Us.

In the next step, shown in Fig. 13, the designer will define the derivation rule
itself, which means that she visually formulates a query, which generalizes the
selected path from the first step into a query that selects the elements to be connected
through the property isSenatorOf. To complete this operation she also needs to define
the graph where the derived triples will be stored and a specific URI to be used as the
predicate of the new triples, which in this example will be the URI
http://example.org/isSenatorOf. Note that in this example 3 nodes were generalized
such that only paths between resources of the RDF type Politician and RDF type
State that contain an intermediate node that is part of the United States Senate will be
considered during the derivation process. Consequently, Fusion will derive the new
property isSenatorOf for all instances of the class Politician that are connected to an
instance of the class State through the designated path. The whole process ends with
Fusion adding new triples to Fusion repository.

5.2 Scenario 2 – Adding a Datatype Property citySize to Geonames Linked
Data

In this example, we suppose that the designer wants to derive a new property citySize
for cities in Geonames to describe small and large cities. Therefore she needs to create
a derivation rule that will compute the appropriate values for this new property. She
will want this property to have the value ‘small’ for cities with less then 1.000.000

inhabitants, and ‘large’ otherwise. As the first step in the process, she needs to
provide the Geonames Linked Data endpoint to be queried and a resource (a city) in
Geonames as an example. In this case she supplies the URI
http://sws.geonames.org/2757345/, which represents the city of Delft. This step is
shown in Fig. 14.

Fig. 14 – Fusion’s interface for deriving a data type property

In the next step, Fusion uses the city URI to construct the visual interface where
the designer will express the derivation rule R=(q,p,f). In this interface, she visually
defines the query q, a URI for the new property p, and a Ruby13 expression that will
be used as the function f. In Fig. 15 we show Fusion’s datatype property derivation
view.

13 http://www.ruby-lang.org/en/

Fig. 15– Fusion’s datatype property derivation interface.

In this view the designer specifies that the new property is to be defined for all
resources for which the predicate parentFeature equals Province Zuid-Holland, i.e., it
will compute it for all cities in the province of Zuid-Holland. Also she defines that the
URI of the new property will be http://example.org/citySize. As Fusion was
developed in Ruby, using the ActiveRDF API, the function f can be defined as a Ruby
expression that for this example is as shown in Fig. 16.

resource.population.to.i > 1.000.000 ? ’large’:’small’

Fig. 16– Sample Ruby expression for computing the citySize value.

Thi whole process ends with Fusion adding new triples to Fusion repository.

6 Conclusion and Future Work

Linked Data provides a cloud of distributed datasets that can be used “as is” for
building applications. However, its data is often expressed in a low-level ontology
that does not reflect the ontology associated with the application model. In order to
fill the gap between these two representational models it is necessary to somehow
map these two models. Although there exist approaches for solving this problem, such
as ontology matching techniques, views over RDF data and inference rules, they do
not consider this task as a process that also involves Linked Data schema exploration
and understanding. In others words, whatever strategy is used, it will demand from
the designer to identify in both models exactly what to map and how to map it, which
is not trivial, since it also demands a clear understanding of the underlying schema in
the used Linked Data. Fusion integrates the exploratory task into the process of
mapping, thereby helping the designer with identifying the relationships between her
application model and the Linked Data schema, and also in providing a full
architecture for expressing the mapping and extending the used Linked Data such that
it implements the application model.

Fusion works by querying Linked Data and extending it by adding new data into
the cloud without directly altering the original dataset. It accesses the dataset through
standard SPARQL, therefore allowing any dataset in the cloud to be mapped. Fusion
also provides a visual interface that allows the user to explore Linked Data, express
the rules and derive new data, which in the end covers the whole process of mapping
and extending. As Fusion materializes the result of the mapping as new triples in an
extra endpoint in the cloud, it consequently allows the separation of the processes of
building the application and managing the mapping between models.

References

1. Heim, P.; Lohmann, S.; Stegemann, T.: Interactive Relationship Discovery via the
Semantic Web. In Proceedings of the 7th Extended Semantic Web Conference
(ESWC2010), Greece. 2010.

2. SPARQL Specification - http://www.w3.org/TR/rdf-SPARQL-query/
3. Polleres A., Scharffe F., Schindlauer R. SPARQL++ for mapping between RDF

vocabularies. In Proceedings of the 6th International Conference on Ontologies,
DataBases, and Applications of Semantics (ODBASE 2007), Vilamoura. 2007.

4. Volz R., Oberle D., Studer R. Views for light-weight Web ontologies. In Proceedings
of the 2003 ACM symposium on Applied computing. March 09-12. Melbourne.
Florida. 2003.

5. Karvounarakis G., Alexaki S., Christophides V., Plexousakis D., Scholl M. RQL: a
declarative query language for RDF. In Proceedings of the 11th international
conference on World Wide Web. May 07-11. Honolulu. Hawaii. USA. 2002

6. Chen C., Wu Z., Wang H., Mao Y. RDF/RDFS-based Relational Database
Integration. In Proceedings of the 22nd International Conference on Data
Engineering. p.94. April 03-07. 2006

7. A. Magkanaraki, V. Tannen, V. Christophides, and D. Plexousakis. Viewing the
semantic web through RVL lenses. J. Web Semantics, 1(4), 2004.

8. J. Euzenat, A. Polleres, and F. Scharffe. Processing ontology alignments with
SPARQL. In Proceedings of the International Workshop on Ontology Alignment and
Visualization. CISIS 2008. (Barcelona, Spain). March. 2008.

9. Araujo S., Schwabe D. Explorator: a tool for exploring RDF data through direct
manipulation. WWW2009 workshop: Linked Data on the Web (LDOW2009). April
20th, Madrid, Spain. 2009.

10. Volz, J., Bizer C., Gaedke, M., and Kobilarov, G.: Silk – A Link Discovery
Framework for the Web of Data. In Proceedings of Linked Data on the Web
workshop at WWW2009, Madrid. 2009.

11. I. Niles and A. Pease. Towards a standard upper ontology. In Proceedings of the 2nd
International Conference on Formal Ontology in Information Systems (FOIS-2001).
Ogunquit, Maine. 2001.

12. Oren E.,Delbru R., Gerke S., Haller A., Decker S. ActiveRDF: ObjectOriented
Semantic Web Programming. Digital Enterprise Research Institute National
University of Ireland, Galway Galway, Ireland. 2007

13. Hassanpour, S., O’Connor, M.J., Das, A.K. A Software Tool for Visualizing,
Managing and Eliciting SWRL Rules. In Proceedings of the 7th Extended Semantic
Web Conference (ESWC10). Heraklion, Greece. 2010.

