An End-user Domain-specific Model to Drive Dynamic User Agents Adaptations

Ingrid Nunes, Simone D.J. Barbosa, and Carlos J.P. de Lucena

Pontifical Catholic University of Rio de Janeiro (PUC-Rio) — Rio de Janeiro — Brazil
E-mail: {ionunes, simone, lucena}@inf.puc-rio.br

Abstract

Modeling automated user tasks based on agent-oriented
approaches is a promising but challenging task. Personal-
ized user agents have been investigated as a potential way of
addressing this issue. Most of recent research work has fo-
cused on learning, eliciting and reasoning about user prefer-
ences and profiles. In this paper, our goal is to deal with the
engineering of such systems, barely discussed in the litera-
ture. In this context, we present a high-level domain-specific
model whose aim is to give users the power to customize and
dynamically adapt their user agents. In addition, we pro-
pose a general architecture for developing user-customizable
agent-based systems.

1 . Introduction

Many modern computer systems are providing assistance
to several of our usual tasks, by incorporating features with
a proactive and autonomous behavior. Typical examples in-
clude product recommendations based on our purchase his-
tory and generation of playlists based on songs we listen.
These systems are increasingly becoming part of our every-
day life. A generalized and ambitious idea underlying such
systems is the personalized user agents [8], which are per-
sonal assistants acting on the users’ behalf. Even though sig-
nificant research effort has been invested on developing user
agents, we are far from their massive adoption.

Schiaffino & Amandi [11] presented an empirical study
that gives a solid basis for explaining this scenario. They
claim the “human-computer interaction people have criti-
cized agent-based methodologies that seem to produce sys-
tems not easily accepted by the user: one of the main reasons
is the autonomy of the agents that can cause a loss of control
by the user.” Their study showed that different users need
different kinds of user agents. In addition, a large group of
users is willing to adopt user agents only if they know exactly
what the agent is going to do.

Our research addresses this group of users. In this paper
we demonstrate an approach to empower users with a high-
level domain-specific language that allows them to dynami-
cally program and personalize their agents, as opposed to in-

ference models that might reach the wrong conclusions about
user preferences and cause agents to take inappropriate ac-
tions. Our approach distinguishes user configurations from
preferences, which we collectively refer to as customizations.
Configurations are direct and determinant interventions that
users perform in a system, such as adding/removing services
or enabling optional features. They can be related to environ-
ment restrictions, e.g. a device configuration. Preferences
represent information about the users’ values that influence
their decision making, and thus can be used as resources
in agent reasoning processes. They typically indicate how
user rates certain options better than others in certain con-
texts. The present work evolved from our approach for build-
ing customized service-oriented user agents [10], which only
dealt with user configurations and it did not address dynamic
adaptations, i.e. our previous user agents did not evolve at
runtime.

Our goal in this paper is twofold. We present a Domain-
specific Model (DSM) to model user preferences, which pro-
vides the necessary vocabulary to build an end-user prefer-
ences language. Exiting representation models of user pref-
erences force users to express their preferences in a particu-
lar way. Consequently, these works create the need for elic-
itation techniques to interpret answers to questions and in-
directly build the user model. The language that our DSM
creates allows users to express different kinds of preference
statements, creating a vocabulary that is very close to natural
language. The proposed DSM is a metamodel that may be
instantiated to build different applications.

We also show how this language is used in broader con-
text, which is an architecture to build user-customizable ap-
plications, composed of user agents that are dynamically
adapted based on a user model that follows our metamodel.
We have taken into account software engineering issues iden-
tified as current practices to develop applications based on
user models. In this sense, we also contribute with an anal-
ysis of existing mechanisms to implement user customiza-
tions, which may result in low-quality software architectures.
Good (modular, stable, ...) architectures are essential to pro-
duce higher quality software which is easier to maintain.
Otherwise, software architectures may degenerate over time,
making their maintenance a hard task, by increasing costs

with refactorings.

This paper is organized as follows. In Section 2, we
describe our user-driven software architecture. Section 3
presents our DSM, followed by Section 4, which evaluates
our metamodel, showing its generality when used across dif-
ferent domains. Section 5 presents related work. Finally,
Section 6 concludes this paper.

2 . A User-driven Software Architecture

Our research on developing personalized user agents is
driven by a reference architecture that allows to adapt agents
based on an end-user’s DSM. In this section, we first
present usual software engineering practices adopted to de-
velop user-model based systems. They motivate the structure
of our reference architecture, which is also detailed.

2.1 . Software Engineering Practices to De-
velop User Agents

An essential characteristic of user agents is that they store
information specific to each user. This is typically imple-
mented either using: (i) a user model, which stores user
information in a single location and is checked whenever
a user-dependent action is performed; and (ii) control vari-
ables, which are inserted in the code to reflect user cus-
tomizations and used to make some decisions that indicate
to an agent the right course of actions it should take. Both
solutions are essentially the same, with the difference that
the first solution concentrates all the user-specific data. Even
though these solutions produce the desired behavior, they
have drawbacks from a software engineering perspective.

Concentrating all user customizations in a single compo-
nent creates a high coupling between this component and
other system components. In addition, changes in this unique
component may imply a lot of little changes applied to a lot
of different classes. This characterizes the Shotgun Surgery
bad code smell [6]. Moreover, in both solutions, a control
variable will be used — in (i), it is retrieved from the user
model — which is a program variable used to regulate the
flow of control of the program. These control variables, i.e.

(a) Modularizing Services (b) Modularizing User Model

Service 1|:I:I:| Service 1I:|
seicod [|Sevieed |

(¢) Our approach User Model
cd
53
78
/ [(SRR \‘ v
Services

Figure 1. Modularization Approaches.

user customizations, may be used in several system locations
and are usually used in chained if or switch statements
scattered throughout the system. If a new clause is added to
the switch, all statements must be changed. This is another
bad code smell, the Switch Statement [6], and the object-
oriented notion of polymorphism gives you an elegant way
to deal with this problem.

Another software engineering issue related to user agents
is that user customizations may be seen as a concern in a
system that is spread all over the code. However, at the same
time, each customization is associated with different services
(also concerns) provided to users. Therefore, when develop-
ing such system one has to choose the dimension in which
the software architecture will be modularized: in terms of
services (Figure 1(a)) or modularizing user settings in a sin-
gle model (Figure 1(b)). It can be seen that it is not possible
in either approach to modularize concerns in single modules.
In addition, without modularizing user customizations, as in
Figure 1(a), they are buried inside the code, thus making it
difficult to understand them as a whole.

Based on these arguments, we claim that there is a need
for better software architectures to build personalized user
agents, taking into account good software engineering prac-
tices. However, dealing with variable traits that emerge from
user customization points is not a trivial task. These cus-
tomization points are spread all over the system architecture
and play different roles in agent architectures [5, 9]. If all
this information is contained in a single user model, we have
the problems discussed above and this model would aggre-
gate information related to different concerns of the system
(low cohesion among user model elements).

2.2 . Detailing our Software Architecture

Our solution to the previously described issues is to pro-
vide a virtual separation of concerns. The main idea is to
structure the user agent architecture in terms of services by
modularizing its variability as much as possible into agent
abstractions. We provide a virtual modularized view of user
customizations, as Figure 1(c) illustrates. Customizations
are not design abstractions, but they are implemented by
typical agent abstractions (goals, plans, etc.), i.e. they play
their specific roles in the agent architecture. The virtual user
model is a complementary view that provides a global view
of user customizations. This model uses a high-level end-
user language, and users are able to configure their agents
by means of this model. This section details our proposed
architecture, depicted in Figure 2, and describes the mecha-
nism that makes the virtual user model (henceforth referred
to as user model) work with agent architectures.

The User Agents module consists of agents that provide
different services for users, e.g. scheduling and trip plan-
ning. Their architecture supports variability related to dif-
ferent users, as well as provide mechanisms to reason about

¥ -
Cﬁ% | User
e~
- £

Configuration“ Learning J Applications Interface

User Model

funoseg

Synchronizer ‘

|epo urewoq

Loal |l o ke S

Remote

Figure 2. Proposed Architecture.

preferences. These agents use services provided by a dis-
tributed environment (the Services cloud), and their knowl-
edge is based on the Domain Model, composed of enti-
ties shared by user agents and services, application-specific,
etc. The Security module addresses security and privacy is-
sues, because user agents may share information with other
user agents. This module aggregates policies that restrict
this communication, assuring that confidential information is
kept safety secured. Users access services provided by user
agents through the Applications Interface module.

The User Model contains user configurations and prefer-
ences expressed in a high-level language. They are present
in the user agents architecture but as design-level abstrac-
tions. Clearly, there is a connection from the User Model and
User Agents. This connection is stored in the form of trace
links, indicating how and where a customization is imple-
mented in a user agent(s). Adaptations are performed at run-
time and are accomplished based on the trace links between
the User Model and the User Agents architecture. The Syn-
chronizer is the module in charge of adapting User Agents
based on changes in the User Model. It is able to understand
these trace links, and knows which transformation must be
performed in the User Agents based on changes in the User
Model. Therefore, the User Model drives adaptations in the
User Agents. By means of the Configuration module, users
can directly manipulate the User Model, which gives them
the power to control and dynamically modify user agents,
using a high-level language. In addition, changes in the User
Model may be performed or suggested by the Learning mod-
ule, which monitors user actions to infer possible changes in
the User Model. This module has a degree of autonomy pa-
rameter, so it may automatically change the User Model, or
just suggest changes to it, to be approved by the end users.

3 . A Metamodel for Building Application-
specific User Models

In this section, we present and detail our proposed meta-
model, whose aim is to allow to build application-specific
user models, using domain-specific abstractions. The meta-
model provides concepts to represent user configurations and
preferences. Our metamodel, which is an extension of the

wenumerations siypes +domains

Type:

AllowedPreferences RatingDomain

o e

wanums
ORDER A ﬁ %
MIN_MAX
REFERENCE_VALUE
DONT_CARE
CONSTRAINT

DiscreteDomain ‘ContinvgusDomain

- lower int
- uppern int

- lower: flost
- upper: float

ValueDomainAllowedPreferences

1 J/wa\usl:‘emain

EnumerationDomain

- enumerstion: Enumerstion

DstaType
ValueDomain
DsfaType
Ic1 operty UML Metamodel::
+domain } 1
+ownedVslue +p'”'*"‘«"\J/'
+classy (71
MultiplicityElement
Value Tvpe | +class TypedElement
umL lass 0.1 UML Metamodel::Property +opposite
-~ —
- isAbstract: boolean +ownedAttibute | gofouit: Sting
*fordered]} |- s

0.1

Figure 3. A Metamodel for Modeling User Pref-
erences (Part).

UML metamodel', is depicted in Figures 3 and 4. Elements
of the UML metamodel, e.g. Class and Property, are
either distinguished with a gray color in diagrams or are re-
ferred in properties.

Before instantiating the metamodel to model user cus-
tomizations at runtime, it is necessary to build the Domain
Model (Section 2) at development time, for defining domain
abstractions that are referred to in the User Model. The Do-
main Model consists of: (i) an Ontology model; (ii) a Vari-
ability model; and (iii) a Preferences Definition model. The
Ontology model represents the set of concepts within the
domain and the relationships between those concepts. The
Variability model, in turn, allows modeling variable traits
within the domain, which are later used for defining user
configurations. The goal of the Variability model is to de-
scribe variation points and variants in the system, which can
be either optional or alternative. In addition, restrictions may
be defined in order to represent relationships between vari-
ations. The Variability model is used to define the config-
uration of the system in the User Model. This part of our
metamodel was explored in our previous work [10] and is
out of the scope of this paper. Therefore, we give this brief
introduction to the Variability model, but we refer the reader
to [10] for further details.

The part of our metamodel that is used in the Preferences
Definition model is presented in Figure 3. The purpose of
this model is to define how users can express their prefer-
ences and about which elements of the Domain Model. Even
though it is desirable that users be able to express preferences

Ihttp://www.omg.org/spec/UML/

«enumeratio... |1

Contraint

+cond
+oond | Condition

c intType

Preference

4

FOSITIVE
NEGATIVE

% 7 ReferenceValuePreference

\ <

DontCaref

RatingF Orderf

referenceValus: ValueSpecification

- value: ValusSpecification||| - strict: boolean

‘ormula

+prefi

~pref2

—

1 \l/ +ype

AndFormula

A

valus: Valus cification

+target ; ‘
AtomicFormula +target
1

PreferenceTarget|

U

1

T
+argets

ComparisenOperator

NotFormula

OrFormula

Harget

1 Harget

g 7

| —

«wenumerstions
OptimizationType

MAXIMIZATION
MINIMIZATION

«ENUMs
EQUAL
NOT_EQUAL

Target

PropertyPreferenceTarget| _

cl Target

Targe|

- target: Enumerstionliters|

+operator

- terget: Property

target: Class

- target: Valus

LESS
LESS_EQUAL

+operator

4

=)

PropertyValuePreferenceTarget

LeafPropertyPreferenceTarget

NeastedPropertyPreferenceTarget

GREATER
GREATER_EQUAL

1

- wvalue: ValueSpecification

Figure 4. A Metamodel for Modeling User Preferences (Part Il).

in different ways, it is necessary to have agents that can deal
with them. For instance, if application agents can deal only
with quantitative preference statements, user preferences ex-
pressed in a qualitative way will have no effect on the system
behavior.

Users can express different types of preference: (i) Or-
der (ORDER) — expresses an order relation between two el-
ements, allowing users to express “I prefer trains to air-
planes.” A set of instances of the Order preference comprises
a partial order; (ii) Reference Value (REFERENCE_VALUE)
— enables users to indicate one or more preferred values for
an element. It can be interpreted as the user preference
is a value on the order of the provided value; (iii) Mini-
mize/Maximaze (MIN_MAX) — indicates that the user pref-
erence is to minimize or maximize a certain element; (iv)
Don’t Care (DONT_CARE) — allows indicating a set of el-
ements the user does not care about, e.g. “I don’t care if I
travel with company A or B;” (v) Rating — allows users rating
an element. By defining a Rat ingDomain for an element,
users can rate this element with a value that belongs to the
specified domain. This domain can be numeric (either con-
tinuous or discrete), with specified upper and lower bounds.
In addition, an enumeration can be specified, e.g. LOVE,
LIKE, INDIFFERENT, DISLIKE and HATE. Moreover, dif-
ferent domains can be specified for the same element. Using
Rating preferences, it is possible to assign utility values to
elements, or to express preference statements; and (vi) Con-
straint (CONSTRAINT) — a particular preference type that
establishes a hard constraint over decisions, as opposed to
the other preference types, used to specify soft constraints.
Constraints allows users to express strong statements, e.g. “/
don’t travel with company D.”

Different kinds of preferences may be used by agents in
different ways, according to the approaches they are using to
reason about preferences. If an agent uses utility functions
and the user defines that the storage capacity of a computer

must be maximized and provides a reference value «, the
agent may choose a utility function like f(z) = ¢/x.

For defining the allowed preference types, developers
must create instances of AllowedPreferences, and
make the corresponding associations with types and do-
mains. The specializations of AllowedPreferences
characterize different element types that can be used in
preference statements. There are four different possibili-
ties: classes (I prefer notebook to desktop), properties (The
notebook weight is an essential characteristic for me) and
their values (I don’t like notebooks whose color is pink), enu-
meration literals (I prefer red to blue) and values (Cost is
more relevant than quality). Value is a first-class abstrac-
tion that we use to model high-level user preferences. We
adopted this term from [3]. A scenario that illustrates the use
of values is in the travel domain. A user may have comfort
(a value) as a preference when choosing a transportation, in-
stead of specifying fine-grained preferences, such as trains
are preferred to airplanes, but traveling in an airplane first-
class is better than by train, and so on. In this case, the user
agent is a domain expert that knows what comfort means.

Based on these definitions and on our metamodel (Fig-
ure 4), it is possible to build a User Model to model pref-
erences and configurations. It is composed of two parts: (i)
Configuration model; and (ii) Preferences model. As dis-
cussed above, in the Configuration model, users choose op-
tional and alternative variation points from the Variability
model, defining their configurations [10]. On the other hand,
in the Preferences model, users define preferences and con-
straints. These are more closely related to a cognitive model
of the user. User preferences (or soft constraints) determine
what the user prefers, and indirectly how the system should
behave. If the preferred behavior is not possible, the sys-
tem may move to other acceptable alternatives. Constraints,
in turn, are restrictions (hard constraints) over elements. As
opposed to preferences, they directly define mandatory or

forbidden choices that must be respected by the system.

Figure 4 shows the Constraint element and five differ-
ent specializations of Preference that represent the dif-
ferent preference types previously introduced. Constraints
are expressed in propositional logic formulae, however us-
ing only -, A and V logical operators. Atomic formulae
refer to the same types of elements of preferences and can
use comparison operators (=, #, >, >, <, <) between
properties and their values. The PreferenceTarget
and its subtypes are used to specify the element that is
the target of the preference statement or formula. In
addition, it allows to specify nested properties, such us
Flight.arrivalAirport.location.country. If
we have directly associated preferences to classes, prop-
erties, enumerations and values, either we would have to
make specializations of each preference type to each element
type or to change the UML metamodel to make a common
superclass of classes, properties, enumerations and values.
Given that we did not want to modify the UML metamodel,
but only to extend it, and the first solution would generate
four specializations for each preference type, we used the
PreferenceTarget as an indirection for elements that
are referred in preferences and constraints.

Besides defining preferences and constraints, users can
specify conditions, also expressed in propositional logic for-
mulae, to define contexts in which preferences and con-
straints hold. Furthermore, in order to guarantee that users
produce valid instances of the metamodel, we have defined
additional constraints over instantiated models, e.g. in a
nested property, the child of a property whose class is X must
also be a property of Class X.

4 . Evaluating our User Metamodel across Dif-
ferent Application Domains

Our metamodel was built using preference statements col-
lected from different individuals and from papers related
to user preferences. The idea was to contemplate the dif-
ferent kinds of preference statements in order to maximize
the users’ expressiveness. The metamodel uses abstractions
from the user preferences domain, therefore the language
is built as an end-user language. This section presents two
Preferences models to show that our metamodel is generic
enough to model different kinds of preferences statements
in different domains — flight and computer domains. Given
that these are two well-known domains, we assume that the
reader is familiar with them, and due to space restrictions,
we present only the Preferences models. In addition, we as-
sume that the Preferences Definition model defines that all
preference types over all elements are allowed.

The first Preference model, which is from the flight do-
main, indicates where a user prefers to seat inside an air-
plane. This model consists of three order preferences, two

FlightDuration
LeafPropertyPreferenceTarget (<= —|

target = Flight durstion

DurationL EG4 :AtomicFormulal
=LESS_EQUAL

DurationGT4 :AtomicFormula

erator = GREATER
4

+pref2 SeatlocationWindow : +preft
Proj ValuePreferenceTarget

value = WINDOW
targst = Seat.location

AisleGTWindow :
OrderPreference

WindowGTAisle : | ¥=endition| | angFlight :
OrderPreference Condition

ShortFlight | +condition
Condition

LocationXRow -
OrderPreference

strict = true strict = true

Seatl ocationAisle -
ValuePreferencelarget

valus = AISLE +prefl

9 Proy
strict = trus +pref1
Seat.location

targe
+prafi J/ +praf2

Seatl ocation -

LeafPropertyPreferenceTarget

targst = Seat.location

SeatRow :
LeafPropertyPreferenceTarget

target = Sestrow

type = MINIMIZATION

(a) Flight Domain

HotebookWeightL E3

Pricefround : AtomicFormula

ReferenceValuePreference b B]

constraintType = FOSITIVE

referenceValue = 800

v

MotebookPrice MinWeight :
LeafPropertyF Target MaxMinF

type = MINIMIZATION

NotebookWeight :
LeafPropertyPreferenceTarget

target = Motebook.weight

target = Notebaok.price

Costs :
RatingPreference

Mobility2 : Readabilityd : Performanced
RatingPreference RatingF RatingF
value = ++

valus = 225+ value = 3453 valus = #2442

v v v

MobilityPreference : ReadabilityPreference : PerformancePreference : CostPreference -
ValuePreferenceTarget ValuePreferenceTarget ValuePreferenceTarget ValuePreferenceTarget

i ¥ v v

| Mobility :Value | | Readability :Value |

ComputerDomainPreferences : L.

ValueDomainAllowedPreferences Cﬂm
e ValueDomain @EnUMs

; StartRateDomain : L

EnumerationDomain

|F'erfurma nce .Value‘

Cost :Value ‘

‘ «enumeratic...

StartRate

(b) Computer Domain

Figure 5. User Preferences model.

of them with conditions, and one minimization preference.
Next, we present the four modeled preference statements in
natural language, and Figure 5(a) shows how they are mod-
eled with our metamodel abstractions.

P1. If the flight is short, i.e. its duration does not exceed 4
hours, I prefer a seat by the aisle to a seat by the window.
P2. If the flight is long, i.e. its duration is higher then 4
hours, I prefer a seat by the window to a seat by the aisle.
P3. I always prefer to sit at the first rows of the airplane.
P4. Sitting in the first rows of the airplane is more important
to me than the seat location.

The computer domain Preferences model presented in
Figure 5(b) has some elements in gray color. They are
not part of the Preferences model, but from the Domain
model, but we included them in Figure 5(b) to present some
application-specific concepts used in this model. First, four

values are defined in the Computer Domain (mobility, read-
ability, performance and cost). These values can be rated
with “+”, ranging from one to five. These are the natural
language preference statements modeled in Figure 5(b):

P1. Cost is the most important value (+++++).

P2. I rate performance with ++++.

P3. I rate readability with ++++.

P4. I rate mobility with ++.

P5. I'm expecting to pay around $800 for my laptop.

P6. I want a computer with less than 3Kg.

P7. The lighter the computer is, the better.

It is important to notice that Rating and Order preferences
provide different information. By saying that cost is +++++
and performance is ++++, a user is informing that cost is
more important than performance (order), but performance
is also important, and should be taken into account.

5 . Related Work

Several approaches have been proposed to deal with user
preferences. To build our metamodel, we have made exten-
sive research on which kinds of preferences other propos-
als represent and additional concepts they define. Typically,
preferences are classified as quantitative or qualitative (e.g.
“I love summer” versus “I like winter more than summer”).
Both approaches can be represented through our metamodel.
Quantitative preferences are modeled in the framework pro-
posed in [1], by means of a preference function that maps
records to a score from O to 1. On the other hand, CP-Nets
[4] models qualitative preferences. CP-Nets also allow mod-
eling conditionality, which is considered in our work as well.
The concept of normality is defined in [7], so that users can
express preferences considering normal states of the world,
but these preferences may change when the world changes.
The normality abstraction can be modeled using conditions
in our metamodel.

Ayres & Furtado proposed the OWLPref [2], a declarative
and domain-independent preference representation in OWL.
OWLPref does not precisely define the preferences model,
e.g. lacking the definition of associations, it shows only a hi-
erarchical structure of preferences. A preference metamodel
is also proposed in [12]. However, its expressiveness is very
limited. It only allows to define desired values (or intervals)
of object properties.

6 . Conclusion

In this paper, we proposed a domain-specific metamodel
that provides abstractions from the user domain, including
constraints and preferences. Different abstractions used by
end users in natural language statements are directly repre-
sented. Our metamodel provides a domain-specific language
that empowers users to express their preferences to program
their agents. Besides constraints, five different preferences

types can be represented. In addition, we adopt values as
a first-class abstraction to model high-level preferences. In-
stances of our metamodel are to be used in combination with
our proposed architecture, which uses them as a virtual user
representation. Services are provided by user agents struc-
tured with traditional agent-based architectures. The User
Model provides a modularized view of different user-related
concepts spread into agent architectures. A Synchronizer
module ensures that changes in the User Model demands ap-
propriate adaptations in user agents.

We are currently working on a language based on our
metamodel using syntactic sugar. In addition, we are investi-
gating how to verify the User Model to identify inconsisten-
cies across preferences.

Acknowledgments

This work has been partially supported by CNPq 557.128/2009-9 and
FAPERIJ E-26/170028/2008. It is related to the following topics: Software
technologies for web applications - A Multi-Agent Systems Approach for
Developing Autonomic Web Applications - G1. Design techniques to im-
prove the development of autonomic Web applications.

References

[1] R. Agrawal and E. L. Wimmers. A framework for expressing
and combining preferences. In 2000 ACM SIGMOD, pages

297-306, 2000.
[2] L. Ayres and V. Furtado. Owlpref: Uma representagdo declar-

ativa de preferéncias para web semantica. In XXVII Congresso

da SBC, pages 1411-1419, Brazil, 2007.
[3] T. Bench-Capon. Persuasion in practical argument using

value-based argumentation frameworks. Journal of Logic and

Computation, 13(3):429-448, 2003.
[4] C. Boutilier, R. I. Brafman, H. H. Hoos, and D. Poole. Cp-

nets: A tool for representing and reasoning with conditional
ceteris paribus preference statements. Journal of Artificial In-

telligence Research, 21:135-191, 2004.
[5] J. Doyle. Prospects for preferences. Computational Intelli-

gence, 20:111-136, 2004.

[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1 edition, July 1999.

[7] J. Lang and L. van der Torre. From belief change to prefer-
ence change. In ECAI 2008, pages 351-355, The Netherlands,

2008. I0S Press.
[8] P. Maes. Agents that reduce work and information overload.

Commun. ACM, 37(7):30-40, 1994.
[9] L. Nunes, S. Barbosa, and C. Lucena. Modeling user pref-

erences into agent architectures: a survey. Technical Report

25/09, PUC-Rio, Brazil, September 2009.
[10] I. Nunes, C. J. Lucena, D. Cowan, and P. Alencar. Building

service-oriented user agents using a software product line ap-

proach. In ICSR ’09, pages 236-245, 2009.
[11] S. Schiaffino and A. Amandi. User - interface agent inter-

action: personalization issues. Int. J. Hum.-Comput. Stud.,
60(1):129-148, 2004.

[12] D. Tapucu, O. Can, O. Bursa, and M. O. Unalir. Metamodel-
ing approach to preference management in the semantic web.
In M-PREF 2008, pages 116-123, USA, 2008.

