
Estimating Self-Sustainability in Peer-to-Peer Swarming Systems

Daniel S. Menasché•, Antonio A. A. Rocha†,

Edmundo A. de Souza e Silva†, Rosa M. Leão†, Don Towsley•, Arun Venkataramani•

• University of Massachusetts, Amherst, MA, USA

{sadoc, towsley, arun}@cs.umass.edu

† Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil

{arocha, edmundo, rosam}@land.ufrj.br

Abstract

Peer-to-peer swarming is one of the de facto solutions for distributed content dissemination in today’s Internet. By

leveraging resources provided by clients, swarming systems reduce the load on and costs to publishers. However, there

is a limit to how much cost savings can be gained from swarming; for example, for unpopular content peers will always

depend on the publisher in order to complete their downloads. In this paper, we investigate such a dependence of peers

on a publisher. For this purpose, we propose a new metric, namely swarm self-sustainability. A swarm is referred to

as self-sustaining if all its blocks are collectively held by peers; the self-sustainability of a swarm is the fraction of time

in which the swarm is self-sustaining. We pose the following question: how does the self-sustainability of a swarm vary

as a function of content popularity, the service capacity of the users, and the size of the file? We present a model to

answer the posed question. We then propose efficient solution methods to compute self-sustainability. The accuracy of

our estimates is validated against simulations. Finally, we also provide closed-form expressions for the fraction of time

that a given number of blocks is collectively held by peers.

1 Introduction

Peer-to-peer swarming, such as used by BitTorrent [6], is a scalable and efficient way to publish content in today’s

Internet. Peer-to-peer swarming has been widely studied during the last decade, and its use by enterprises is steadily

growing [2, 23, 30, 31]. By leveraging resources provided by clients, peer-to-peer swarming decreases costs to publishers,

and provides scalability and system robustness. As demand for content increases, system capacity scales accordingly, as

all clients collaborate with each other while downloading the desired content. As the demand for multimedia files and the

size of these files increase, peer-to-peer swarming systems have become an important content dissemination solution for

many content providers [2, 31].

However, there is a limit on how much savings can be gained from swarming techniques. For example, in the case of

unpopular content, peers must rely on the publisher in order to complete their downloads. In this paper, we investigate

such a dependence of peers on a publisher.

1

A swarm is a set of peers interested in the same content (file or bundle of files [15]) that exchange blocks of the files

among themselves. We consider a scenario where each swarm includes one stable publisher that is always online and ready

to serve content. The corresponding system is henceforth referred to as a hybrid peer-to-peer system, since peers can always

rely on the publisher if they cannot find blocks of the files among themselves. If all blocks are available among the peers,

the swarm is referred to as self-sustaining. Quantifying swarm self-sustainaibility, defined as the fraction of time during

which the swarm is self-sustaining, is useful for provisioning purposes. The larger the swarm’s self-sustainability, the

lower the dependency of peers on the publisher, and the lower the bandwidth needed by the publisher to serve the peers.

The primary contribution of this paper is a model to study swarm self-sustainability. We use a two-layer model to

quantify swarm self-sustainability as a function of the number of blocks in the file, the mean upload capacity of peers

and the popularity of a file. The upper layer of our model captures how user dynamics evolve over time, while the

lower layer captures the probability of a given number of blocks being available among the peers conditioned on a fixed

upper layer population state. Our model is flexible enough to account for large or small numbers of blocks in the file,

heterogeneous download times for different blocks, and peers residing in the system after completing their downloads. We

derive closed-form expressions for the distribution of the number of blocks available among the peers and apply them to

show that self-sustainability increases as a function of the number of blocks in the file. The derived expressions involve

sums and subtractions of large numbers, and are amenable to numerical errors. Hence, we present an efficient algorithm

to compute the swarm self-sustainability that avoids these problems. We then numerically investigate the minimum

popularity needed to attain a given self-sustainability level. Finally, we validate the estimates made by the model against

detailed simulations.

The remainder of this paper is organized as follows. After providing a brief background into swarming systems in §2,

in §3 we propose our model. In §4 we present an efficient algorithm to solve the proposed model followed by analytical

results in §5. In §6 we evaluate our model against experiments. In §7 we discuss some limitations and caveats of our

model, §8 presents the related work and §9 concludes the paper.

2 Swarming Systems Primer

A swarm is a set of peers concurrently sharing content of common interest. A content might be a file or a bundle of files

that are distributed together. The content is divided into blocks that peers upload to and download from each other.

Since there is no interaction between peers across swarms, each swarm can be studied separately.

BitTorrent is one of the most popular applications that uses peer-to-peer swarming for content dissemination, and we

will use it to illustrate how swarming works. Unlike a traditional server-based system, BitTorrent includes a tracker that

promotes the interaction of participating peers. The identities of the trackers are announced to peers in torrent files,

which can be found and downloaded through search engines such as Torrent Finder [1]. Peers periodically query the

tracker to obtain a random subset of other peers in the swarm in order to exchange (upload and download) blocks with

them. Peers also discover new neighbors from other peers, in addition to the tracker, when the Peer Exchange (PEX)

2

λ µ1 n0 µ2 n1. . .

n1n0

γ nB

nBnh

. . .
µh+1 nh

Figure 1: User dynamics. In stage h, there are nh users, each user owning h blocks, 0 ≤ h ≤ B.

extension is enabled.

There are two kinds of peers in the system: seeds and leechers. Seeds are peers that have completed the download

and only upload blocks. Leechers are peers that have not completed their downloads and are actively downloading (and

uploading) blocks of the file. Thus, leechers turn into seeds upon completing their downloads. Leechers adopt a tit-for-tat

incentive strategy while downloading the file, i.e., leechers preferentially upload content to other leechers that reciprocate

likewise, and “choke” or ignore leechers that do not reciprocate.

As many leechers may leave the system immediately after completing the download, content publishers often support

a stable seed that we refer to as the publisher. A publisher is guaranteed to have all of the blocks constituting the file.

In the rest of this paper we assume that each swarm includes one publisher.

BitTorrent peers adopt the rarest first policy to decide which blocks to download from their neighbors. According

to the rarest first policy, a peer prioritizes the rarest blocks when selecting the ones to download next. We say that

a peer is interested in another peer if the latter can provide blocks to the former. Since rarest first guarantees a high

diversity of blocks in the system, any peer is almost always interested in any other peer, which in general yields high

system performance [12].

Note, however, that in BitTorrent peers only have local information about the system. Hence, they can only implement

a local rarest first policy. The intrinsic limit on the number of connections that a user can establish naturally provides

each of them with only a myopic view of the system. Firewalls, NATs and other exogenous factors may also prevent users

from establishing connections among themselves.

3 Model

In this section, we present our model to estimate swarm self-sustainability. The model is hierarchical in nature. The upper

layer characterizes user dynamics, and the lower layer comprises a performance model used to quantify the distribution of

blocks available among the peers, for a given population state. We present each of the layers, in §3.1 and §3.2, respectively,

and then introduce the metric of interest in §3.3.

3.1 User Dynamics Model

A file consists of B blocks. Requests for a file arrive according to a Poisson process with rate λ. We further assume that

the time required for a user to download its jth block is a random variable with mean 1/µj , 1 ≤ j ≤ B. After completing

their downloads, peers remain in the system for mean time 1/γ.

3

We model user dynamics with (B + 1) M/G/∞ queues in series. Each of the first B M/G/∞ queues models the

download of a block, and capture the self-scaling property of BitTorrent swarms, i.e., each peer brings one unit of service

capacity to the system. The last queue captures the residence time of seeds (see Figure 1).

The system population state is characterized by a (B + 1)-tuple, n = (n0, n1, n2, . . . , nB), where nh represents the

number of customers in queue h, i.e., the number of users that have downloaded h blocks of the file, 0 ≤ h ≤ B. We

denote by N the random variable characterizing the current state of the upper layer model and by n its realization. The

number of peers in the system is referred to as n.

Peers arrive according to a Poisson process with rate λ to queue 0 and transit from queue h, also referred to as stage h,

to queue h + 1 (0 ≤ h ≤ B − 1) with rate µh+1, the download rate of the (h + 1)th block downloaded by a peer. The mean

residence time in queue B captures the mean time that peers remain in the system after completing their downloads, 1/γ.

Setting γ = ∞ models the case where all peers immediately leave the system after completing the download. Throughout

this paper, unless otherwise stated, we assume that the mean download times of all blocks are the same, 1/µj = 1/µ,

1 ≤ j ≤ B. Nevertheless, all results are easily extended to the case where the mean time it takes for a user to download

its jth block is 1/µj .

Let π(n0, . . . , nB) be the joint steady state population probability distribution, π(n0, . . . , nB) = P (N = (n0, . . . , nB)),

of finding nh users in the hth queue, 0 ≤ h ≤ B, and let πh(nh) = P (Nh = nh), h = 0, . . . , B, be the corresponding

marginal probability. The steady state distribution of the queueing system has the following product form,

π(n0, . . . , nB−1, nB) =
B∏

h=0

πh(nh) =
(λ/γ)nB

nB !
e−(λ/γ)

B−1∏
h=0

[
ρnh

nh!
e−ρ] (1)

where ρ = λ/µ is the load of the system (refer to Table 1 for notation).

3.2 Performance Model For a Given Population State

We now describe the lower layer of the model. Given the current population state, n = (n0, . . . , nB), our goal is to

determine the distribution of the number of blocks available among the peers. We begin by stating our key modeling

assumption.

Uniform and independent block allocation: In steady state, the set of blocks owned by a randomly selected

user in stage h is chosen uniformly at random among the
(
B
h

)
possibilities and independently among users.

A user u in stage h, 0 ≤ h ≤ B, has a signature sh,u ∈ {0, 1}B , defined as a B bit vector where the ith bit is set to 1 if

the user has block i and 0 otherwise. Each user in stage h owns h blocks and has one of
(
B
h

)
possible signatures.

Under the uniform and independent block allocation, signatures are chosen uniformly at random and independently

among users; the latter is clearly a strong assumption since in any peer-to-peer swarming system the signatures of users

are correlated. Nevertheless, in §6 we show that the effect of such correlations on our metric of interest, swarm self-

sustainability, is negligible in many interesting scenarios. Therefore, we proceed with our analysis under such an assump-

4

parameters
λ mean arrival rate of peers (peers/s)
1/µ mean time to download a block (s)
ρ = λ/µ mean load of the system (per stage)
B number of blocks in file
1/γ mean residence time of seeds
variables
nh number of users that own h blocks
n=(n0,. . ., nB) upper layer state
π(n) steady state probability of state n
n =

∑B
i=0 ni number of peers in the system

V number of blocks available among the peers
metrics
p(v) = P (V = v) probability of v blocks being available among peers
A=p(B) swarm self-sustainability

Table 1: Table of notation. Vectors are denoted by bold face symbols. Unless otherwise stated, γ = ∞ in which case
nB = 0. When referring to block availability, it is subsumed availability among peers (excluding publisher).

tion.

Let Sh,u be the random variable denoting the signature of the uth user in stage h, and sh,u its realization, 1 ≤ u ≤ n.

The sample space of the lower layer model, Ωn, for a given state of the upper layer, n, is the set of all {0, 1}Bn bit vectors

in which element B(u − 1) + i equals one if the uth user has block i, and zero otherwise, 1 ≤ u ≤ n, 1 ≤ i ≤ B. An

element in Ωn is the concatenation of n bit vectors of size B each. Ωn has cardinality |Ωn| =
∏B

h=0

(
B
h

)nh . Then, under

the uniform and independent block allocation,

P (S1,1=s1,1, . . . ,SB,nB
=sB,nB

|N = n)=
1

|Ωn|
(2)

In the next section, we relate the upper and lower layer models, showing how (1) and (2) yield the key metric of interest,

namely, swarm self-sustainability.

3.3 Self-Sustainability

We now define the key metric of interest, swarm self-sustainability. Let V denote the steady state number of blocks available

among the peers. Denote by p(v) the steady state probability that v blocks are available among the peers,

p(v) = P (V = v) =
∑

n∈NB+1

P (V = v|N = n)π(n) (3)

Definition 3.1. The swarm self-sustainability, A, is the steady-state probability that the peers have the entire file,

A = p(B) (4)

5

Definition 3.1 together with equation (3) yield,

A =
∑

n∈NB+1

P (V = B|N = n)π(n)=
∑

n∈NB+1

P (V = B|N = n)
(λ/γ)nB

nB !
e−(λ/γ)

B−1∏
h=0

[
ρnh

nh!
e−ρ] (5)

The second equality in (5) follows from (1). P (V = B|N = n) is obtained from (2) (see Appendix A).

If peers leave the system immediately after concluding their downloads, we refer to the swarm self-sustainability as

A∞. The swarm self-sustainability, A, when γ < ∞, is obtained from A∞ as follows,

A = 1 − (1 − A∞) exp(−λ/γ), γ < ∞ (6)

The above follows because a block is unavailable among the peers if it is unavailable among the leechers and there are no

seeds in the system.

Note that A is expressed through (5) as an infinite sum. In what follows, we approximate A by its truncated version,

A(N), considering only population states in which there are no more than N users in the system. The value of N is based

on the desired error tolerance η, and is chosen as described in the end of §4.

A(N) =
∑

n∈NBs.t.n≤N

P (V = B|N = n)π(n) (7)

A näıve use of (7) yields an inefficient algorithm to compute A(N) by exploring a number of states that grows exponentially

with respect to the size of the file. This problem is addressed in the next section, where we provide an efficient algorithm

to evaluate A(N).

In the rest of this paper, we refer to the truncated self-sustainability, A(N), simply as self-sustainability, the distinction

between A(N) and A being clear from the context. In addition, since A is readily obtained from A∞ using (6), henceforth

we focus on the case γ = ∞ and make the dependence of p(v) on γ explicit, denoting it by p(v; γ), whenever γ < ∞.

4 An Efficient Solution Algorithm to Evaluate Self-Sustainability

In this section we present an efficient algorithm to compute the swarm self-sustainability in polynomial time. The key

insight consists of aggregating the states in the upper layer of the model in such a way that the lower layer metrics are

computed once per aggregate rather than once per state. The algorithm relies on three observations about our model, the

first related to the performance model for a given population state (lower layer model) and the last two related to the user

dynamics (upper layer model).

Let ψh(k, v) be the probability that, in a system in which k blocks are initially available among peers, v blocks

become available among the peers after an additional user contributes h blocks. Then, ψh(k, v) is characterized by a

6

 B
 B - k k

 v B - v
 h

v - k h - v + k

blocks initially available among peers
blocks initially unavailable among peers
contributed blocks

Figure 2: Recursion to compute probability of v blocks being unavailable among the peers. There are initially k blocks
unavailable among the peers, and v after a user contributes h blocks.

hypergeometric distribution,

ψh(k, v) =

(
k

h−(v−k)

)(
B−k
v−k

)(
B
h

) (8)

Equation (8) follows because there are
(
B−k
v−k

)
ways in which v − k blocks of the additional user do not overlap with the k

previously available blocks, and there are
(

k
h−(v−k)

)
ways in which the other h − v + k blocks can overlap with previously

available blocks (see Figure 2). A recursion to compute ψh(k, v) is presented in Appendix B.

Our second observation regards the steady state probability that a randomly selected user is in stage h, denoted by

σ(h) (0 ≤ h ≤ B − 1). It can be shown that σ(h) = 1/B, 0 ≤ h ≤ B − 1. This is a consequence of the assumption that

the download times of all blocks have the same mean, 1/µ. Note that, in general, if a user downloads its (h + 1)th block

at rate µh+1, 0 ≤ h ≤ B − 1, the model can be easily parameterized by setting σ(h) = (1/µh+1)/(
∑B

i=1 1/µi).

Our third and last observation concerns the total number of users in the system. The total population is characterized

by a Poisson random variable with mean Bλ/µ. This follows from the fact that the sum of B Poisson random variables,

with mean λ/µ, is a Poisson random variable with mean Bλ/µ.

Denote by pn(v) the probability that v blocks are available among the peers conditioned on the presence of n users in

the system,

pn(v) = P (V = v
∣∣∣|n| = n) (9)

It follows from the discussion in the previous paragraph that p(v) = P (V = v) =
∑∞

n=0 pn(v)e−Bρ(Bρ)n/n!. The truncated

version of p(v), p(N)(v), is

p(N)(v) =
N∑

n=0

pn(v)e−Bρ(Bρ)n/n! (10)

It remains to show how to compute pn(v). This is accomplished by making use of our first two observations, as summarized

by the following lemma.

Lemma 4.1. The probability of v available blocks, conditioned on n users in the system, pn(v), satisfies the following

recursion,

pn(v)=

min(v,B−1)∑
h=0

v∑
k=v−h

pn−1(k)ψh(k, v)/B, n ≥ 1

1, n = 0, v = 0

0, n = 0, v 6= 0

(11)

In Appendix C, we show that (11) correctly computes (9). Next, we further simplify recursion (11). Changing the

7

order of the summations and adapting their limits accordingly yields

pn(v)=
v∑

k=0

pn−1(k)
B−1∑

h=m−k

ψh(k, v)/B, n ≥ 1 (12)

The base cases are p0(v)=1 if v = 0 and p0(v)=0 if m 6= 0. In Appendix D we derive the following result,

B−1∑
h=m−k

ψh(k, v) =

 (B + 1)/(B − k + 1), 0 ≤ m ≤ B − 1

k/(B − k + 1), v = B
(13)

Equation (13) is key to further simplifying (12). Replacing (13) into (12) yields, after algebraic manipulation,

Theorem 4.1. The probability of v blocks being available among the peers, p(v), equals

p(v) =
∞∑

n=0

pn(v)e−Bρ(Bρ)n/n! (14)

where pn(v) satisfies the following recursion, 0 ≤ v < B,

pn(v)=

1/Bn, n ≥ 1, v = 0

pn(v − 1) + pn−1(v)((B + 1)/(B(B − v + 1))), n ≥ 1, B > v > 0

1, n = 0, v = 0

0, n = 0, v 6= 0

(15)

and pn(B) = 1−
∑B−1

v=0 pn(v). The approximation p(N)(v) for (14) is obtained by truncating the infinite sum at N . p(N)(v)

is computed in time O(NB).

Theorem 4.1 yields an efficient algorithm to evaluate the swarm self-sustainability. The algorithm has complexity

O(NB), since pn(v) is computed for 0 ≤ n ≤ N and 0 ≤ m ≤ B. Note also that once the elements pn(v) are computed

for a fixed B, one can obtain the self-sustainability for different values of ρ in time O(B).

Let ε(N) be the truncation error, ε(N) = p(B) − p(N)(B). The maximum number of users in the system, N , can be

chosen as a function of ε(N),

ε(N) =
∞∑

n=N+1

p(v)e−Bρ(Bρ)n/n! ≤
∞∑

n=N+1

e−Bρ(Bρ)n/n! = 1 −
N∑

n=0

e−Bρ(Bρ)n/n! (16)

If ρB is large (ρB > 1000), the Poisson distribution is well approximated by a normal distribution. In this case, N can be

chosen so that 1 − Φ((N − Bρ)/
√

Bρ) ≤ η, where η is the desired error tolerance and Φ(·) is the standard normal cdf.

Theorem 4.1 assumes µh = µ, 0 ≤ h ≤ B − 1. If that is not the case, self-sustainability can be computed in time

O(NB log(B)) using an alternative recursion. We refer the reader to [16] for details.

8

5 Model Analysis

We derive closed-form expressions for the probability that v blocks are available among the peers in the system and for

the mean number of available blocks, in §5.1 and §5.2, respectively. The closed-form expressions are useful in order to

gain insight on how different system parameters impact self-sustainability. In §5.2 we use the closed-form expressions to

compute the minimum popularity to attain a given self-sustainability level. In §5.3 we show that the self-sustainability

increases with the file size. However, the closed-form expressions may lead to numerical problems, if used to compute the

self-sustainability for large files (e.g., B > 500), since they involve sums and subtractions of large numbers. This is why

the recursion presented in §4 is useful.

In order to simplify the closed-form expressions, in the remainder of this section we assume that γ = µ, i.e., peers,

after completing their downloads, linger in the system as seeds for an interval with duration drawn from an exponential

distribution with mean 1/γ. Recall that when γ is finite, we make the dependence of pn(v) on γ explicit, and denote it by

pn(v; γ).

5.1 Self-Sustainability Closed-Form Expression

Similar arguments to those in §4 (Theorem 4.1) yield, for γ = µ and 0 ≤ n ≤ N, 0 ≤ v ≤ B,

pn(v; µ)=

1/(B + 1)n, n ≥ 1, v = 0

pn(v − 1;µ) + pn−1(v; µ)(1/(B − v + 1)), n ≥ 1, 0 < v ≤ B

1, n = 0, v = 0

0, n = 0, v 6= 0

(17)

This recursion can be solved (Appendix F), to obtain 1

pn(v;µ)=
(

B

v

) v∑
l=0

(
v

l

)
(−1)l(B − v + l + 1)−n, 1 ≤ n, 0 ≤ v ≤ B (18)

In particular, the probability that all blocks are available among the peers, conditioned on the number of users in the

system, is pn(B; µ) =
∑B

l=0

(
B
l

)
(−1)l(l+1)−n. Using this expression we derive the corresponding unconditional probability,

namely, the swarm self-sustainability,

p(B;µ) =
B∑

l=0

(
B

l

)
(−1)le−(B+1)ρl/(l+1) = 1 −

B∑
l=1

(
B

l

)
(−1)l+1e−(B+1)ρl/(l+1) (19)

We now interpret (19) using the inclusion/exclusion principle, which allows us to apply the Bonferroni inequalities in §5.2

and §5.3. The term exp(−(B + 1)ρl/(l + 1)) is the probability that l specific (tagged) blocks are unavailable among the

peers(refer to [16] for the derivation). So,
(
B
l

)
exp(−(B + 1)ρl/(l + 1)) is the sum of the probabilities that any l blocks

1The expression corresponding to equation (18) for the case γ = ∞ is found in Appendix G.

9

are unavailable among the peers. Therefore, as a consequence of the inclusion/exclusion principle, the probability that at

least one block is unavailable among the peers equals the rightmost summation in (19), and p(B; µ) is its complement.

In what follows, we use the above closed-form expression to analyze the mean number of blocks unavailable among the

peers as well as the impact of the file size on the self-sustainability.

5.2 Minimum Load to Attain Self-Sustainability

We now provide a simple expression to estimate the minimum load necessary to attain high self-sustainability. The result

relies on approximating the swarm self-sustainability using the mean number of available blocks among the peers. The

mean number of available blocks among the peers, E[V], is E[V] = B −Bq, where q is the probability that a tagged block

is unavailable among the peers,

q = exp(−ρ(B + 1)/2) (20)

The expression of q is readily obtained from (19). Note that the mean number of unavailable blocks, Bq, equals the

first term (l = 1) in the rightmost summation in (19). This observation coupled with an application of the Bonferroni

inequality [32] to (19) implies that 1 − p(B; µ) ≤ B − E[V]. When E[V] ≈ B, the upper bound B − E[V] provides an

approximation to the fraction of time that the swarm is not self-sustaining, 1 − p(B;µ).

Next, we present a simple alternative derivation of (20). Let q∞ be the probability that a tagged block is unavailable

among leechers (excluding seeds). In order to compute q∞, note that the mean time that a leecher holds a tagged block

is
∑B−1

l=0 l/(µB) = (B − 1)/(2µ) and the rate at which leechers acquire a tagged block is given by a Poisson process with

mean rate λ. Therefore, q∞ = exp(−ρ(B − 1)/2). In general, a tagged block is unavailable among the peers if no

leecher owns the block and there are no seeds in the system. The probabilities of these two events are exp(−ρ(B − 1)/2)

and exp(−ρ), respectively. Their product yields (20).

We now use the results above to provide a simple expression to estimate the minimum load, ρ?, necessary to attain a

given self-sustainability level, p?, when γ = ∞. It follows from the discussion in the previous paragraph that if γ = ∞

the probability that a tagged block is unavailable among the peers is q∞ = exp(−ρ(B − 1)/2). For values of q∞ close to

0 (q∞ ≤ 0.01), p(B) ≈ 1 + E[V] − B = 1 − Bq∞, as indicated in the beginning of this section. This approximation, in

turn, can be used to select the load ρ? to attain self-sustainability level p?,

ρ? ≈ [2 log (B/(1 − p?))] /(B − 1), γ = ∞ (21)

We further study (21) in §6.3, where we compare the results obtained with this approximation against those obtained with

recursion (15), that provides exact results.

10

5.3 The Impact of File Size on Self-Sustainability

Increasing the file size, B, increases the mean download time of peers, B/µ. In this section, we show that such an

increase in the residence time of peers yields larger swarm self-sustainability. Theorem 5.1 states the result for γ = µ,

B ≥ 4 and ρ ≥ 1.6 and in §6 we provide evidence that it also holds when γ = ∞ and for small values of ρ.

Theorem 5.1 (File Size Impact). If B ≥ 4, ρ ≥ 1.6 and γ = µ, self-sustainability increases with the file size, B.

Proof. We denote the swarm self-sustainability for a given value of B and ρ as p̂(B, ρ). The Bonferroni inequalities [32],

which generalize the inclusion/exclusion principle, applied to (19), yield upper and lower bounds on p̂(B, ρ) and p̂(B+1, ρ),

p̂(B, ρ) ≤ 1 − Be−(B+1)ρ/2 + (B(B − 1)/2)e−(B+1)ρ2/3; 1 − (B + 1)e−(B+2)ρ/2 ≤ p̂(B + 1, ρ) (22)

It is easy to show that if ρ ≥ 1.6 and B ≥ 4 then 1−Be−(B+1)ρ/2 +(B(B − 1)/2)e−(B+1)ρ2/3 ≤ 1− (B +1)e−(B+2)ρ/2,

from which the result follows.

The key insight of Theorem 5.1 can be easily explained in terms of the busy periods of the proposed model. The busy

period is defined as an uninterrupted interval during which the swarm is self-sustaining. As the file size increases, the num-

ber of blocks that need to be maintained increases linearly but the busy period of the system increases exponentially [15].

Indeed, as the file size increases the availability gain compensates the overhead to maintain a larger number of blocks, and

the self-sustainability increases.

6 Evaluation

In this section we report (a) a validation of the proposed model, against detailed simulations, showing that despite

the simplifying assumptions considered in our model, it captures how self-sustainability depends on different system

parameters and (b) results on the minimum popularity to attain a given self-sustainability level.

6.1 Experimental Setup

Our simulation experiments were conducted using the Tangram II modeling environment [8]. Tangram II is an event-

driven, object oriented modeling tool. The three main objects in our simulations are the tracker, the peer and the seed.

Their implementations are based on the official BitTorrent protocol description [6, 12].

6.1.1 Simulator and Protocol Descriptions

When a peer P joins the system, it receives a random list of fifty other peers from the tracker, which constitutes its peer

set. Throughout the simulation, as peers leave the system the size of the peer set of P may dwindle to less than twenty.

Once the peer set size is less than twenty, P requests additional neighbors from the tracker. The set of peers to whom P

offers content blocks is a subset of its peer set, referred to as the active peer set.

11

BitTorrent proceeds in rounds of ten seconds. By the end of each round, peer P runs the tit-for-tat incentive mechanism.

According to this mechanism, P reciprocates contents with those neighbors that contributed in the previous round. P

selects r of those peers that contributed in the last round to add to its active peer set (r ≤ 4). In the next round, the

active peer set of P will consist of the r aforementioned peers plus 5 − r additional peers selected uniformly at random

out of its peer set. This random selection of peers is referred to as optimistic unchoke, performed to allow peers to get

bootstrapped as well as to let them learn about new neighbors. Finally, peers select blocks to download using the rarest

first algorithm, except for the first four blocks, which are chosen uniformly. Each block of the file is divided into sixteen

sub-blocks. After selecting the blocks to download, peers can get different sub-blocks (of the same block) from different

neighbors concurrently. A block can be uploaded after all its sub-blocks are downloaded, ensembled and checked using

the block hash key.

In our experiments we observe that self-sustainability decreases with the size of the active peer sets. That is because,

if the active peer sets are large, each peer splits its bandwidth across many other peers and blocks take longer to get

replicated in the network. As mentioned above, we select an active peer set of size five, which is adopted by many

BitTorrent implementations.

In our experiments the seed behaves as a standard peer, except that it (i) initially owns all blocks and (ii) is altruistic,

hence does not execute the tit-for-tat algorithm. We did not implement the mechanism used by peers to download

their last block, also known as end game mode [6]. This is inconsequential, though, since the end game mode does not

significantly affect the steady state behavior of the system (see §6.2.1 and [4]).

Every time a peer enters the system, receives a block or leaves, we record the event in our logs, the current timestamp,

peer id, and signature (see §3.2).2

6.1.2 Experimental Parameters

The configuration of our experiments consists of torrents that publish a file of size S divided into B blocks of size s,

s = 256KB, a typical block size in BitTorrent. The number of blocks in the file, B, takes values 16, 50, 100 and 200, which

corresponds to files of size 4MB, 12MB, 25MB and 51MB, respectively. Note that if a swarm is constituted of multiple files

which can be downloaded separately, we are interested in analyzing the self-sustainability of each individual file. A file of

size 51MB already yields self-sustainability larger than 0.9 for λ > .05 peers/min (see Figure 4). Simulations to analyze

such a steep increase in self-sustainability quickly yield prohibitively high running times and significant variability in the

metrics of interest across runs. For this reason, we focused on quantitatively validating our model for files with up to 200

blocks, but also use the model to analyze files of size greater than 200 blocks.

The uplink capacity of each peer is 39KBps, which corresponds to µ = 39/256 = 0.15 blocks/s, a typical effective

capacity for BitTorrent peers [22, Figure 1]. The publisher maximum upload capacity is the same as that of a peer.

A publisher that contributes the same capacity as an ordinary peer might correspond to either a domestic user or a

commercial publisher that supports a large catalog of titles and only provides enough capacity for each swarm so as to
2Our simulator as well as the traces generated for this study will be made available in public domain.

12

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16

M
ea

n
N

um
be

r
of

 R
ep

lic
as

Block Identifier

1 peer per min.
4 peers per min.
7 peers per min.

(c)

(a)

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10 12 14 16

D
ow

nl
oa

d
T

im
e

(S
ec

.)

hth Downloaded Block

min max

mean

25% 50%
75%

percentiles 7 peers per min.

1 peer per min.
4 peers per min.

Time
(d)

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n
of

 N
um

be
r

of
 R

ep
lic

as

4 peers per min.
7 peers per min.

4 peers/min.

7 peers/min.

9 peers per min.

P
er

ce
nt

ag
e

 0

 0.1

 0.2

 0.3

 2 4 6 8 10 12 14 16
Block ID (x)

 (1
0,

11
)

Block-Pair IDs (x1, x2)

 0

 0.01

 0.02

 0.03

 (2
,6

)

 (3
,1

4)

 (5
,1

1)

 (7
,1

2)

Percentage of peers that downloaded block ID x
as their first block

Percentage of peers that downloaded block-pair IDs (x1, x2)
 as their last two blocks

Percentage of peers that downloaded block ID x
as their last block

 (1
,2

)

 (1
5,

16
)

P
er

ce
nt

ag
e

Figure 3: (a) Download times of hth block downloaded by a peer. The boxplots show the four quartiles and crosses
indicate means. (b) Top: light (resp., shaded) rectangles are percentage of peers that download block x as their first
(resp., last) block. Bottom: percentage of peers that download block-pair (x1, x2) as their last two blocks. (c) Mean
number of replicas of each block with 95% confidence intervals. (d) Coefficient of variation of number of replicas of blocks
versus time.

allow peers to complete their downloads at rate µ. The peer arrival rate is varied according to the experimental goals

between (.25, .5, 1, 2, . . . , 9) peers/min, as described next.

6.2 Model Validation

Our analytical model makes a number of simplifying assumptions as described in §3. In what follows, our goal is to

show that even with those simplifying assumptions, discussed in §6.2.1, our model still captures swarm self-sustainability

in a realistic setting, as shown in §6.2.2.

6.2.1 Validating Model Assumptions

Our aim in this section is to validate (a) that the mean download times of blocks are roughly the same (an exception being

the first block downloaded by the peers), i.e., µh = µ, 2 ≤ h ≤ B (see §3.1) and (b) that the signatures of the users are

uniformly distributed (see §3.2).

Figure 3(a) shows the mean download time of the hth block downloaded by a peer. The boxplots and lines show the

distribution quartiles and minimum and maximum values. Crosses indicate means download times of blocks, which are

approximately the same, except for the first and last blocks. In particular, even though our simulator ignores the end

game mode [4], in general peers do not experience difficulty finding a neighbor from whom to download their last block.

13

The median of the last block is roughly the same as the one observed for the other blocks, and the mean is only slightly

larger. The first block requested by a peer, however, takes longer to be downloaded. This happens because a peer can

only download its first block after being optimistically unchoked (see §6.1.1). Although this affects the time spent by peers

in stage zero of our model and as a consequence the total download time, it is inconsequential to our self-sustainability

estimates (the time that peers remain in stage zero of the upper layer model has no influence in our results). As BitTorrent

peers downloading their first block cannot upload content, they also don’t contribute to self-sustainability (see §6.1.1).

Our second goal is to study the users’ signatures distribution (§3.2). For this purpose, we validated that the two first

and two last blocks downloaded by a user are indeed uniform and then studied one of the consequences of the uniform

and independence assumption, namely, that the number of replicas of each block in the system is well balanced.

Figure 3(b) (top) shows, for each block, the fraction of peers that downloaded that block as their first block (light

bars). The figure was generated from independent samples: every 500 seconds, one user owning one block was selected at

random, and the identity of its block was recorded (the same procedure was repeated for users owning all but one block

of the file (shaded bars)). Similarly, Figure 3(b) (bottom) shows, for each B(B − 1) block-pairs, the fraction of peers that

downloaded that pair as their first two blocks. Figure 3(b) indicates that the first and last blocks downloaded by users,

as well as the first block-pair downloaded, are approximately uniformly distributed (the same procedure was repeated for

users owning all but two blocks, with similar results).

Figure 3(c) shows the mean number of replicas of each block for λ = 1 peer/min, 4 peers/min and 7 peers/min. The

mean number of replicas is around ρ(B − 1)B/2, which corresponds to a well balanced system (see §5.2). Figure 3(d)

corroborates this claim by showing the coefficient of variation of the number of replicas of blocks as a function of time.

Let ri,t be the number of replicas of block i at time t. The mean number of replicas of blocks at time t is µt =
∑B

i=1 ri,t/B

and the coefficient of variation is ct =
√

(
∑B

i=1(ri,t − µt)2/B)/µt. Figure 3(d) indicates that throughout the simulation,

the coefficient of variation is most of the time smaller than 0.8, which means that the number of replicas of blocks has low

variance. In a system where users’ signatures are uniform and independent we would observe similar behavior.

6.2.2 Validating Model Estimate of Self-Sustainability

To study how content popularity impacts self-sustainability, we simulated BitTorrent in the reference setting described

in §6.1.2, varying the arrival rate of peers, λ, from 1 peer/minute up to 8 peers/minute, in increments of 1 peer/minute,

and keeping all other parameters fixed. Equivalently, this corresponds to an increase in the load, ρ = λs/µ, from 0.1 to

0.8. Each simulation lasted for 10,000s. Twenty one independent simulations were executed for each value of λ, and used

to compute the 95% confidence intervals. The same experiment is repeated for B = 16, 50, 100 and 200.

Figure 4 shows the self-sustainability, A, as a function of the content popularity, λ, for B = 16, 50, 100 and 200. For

unpopular contents, λ = 1 peer/min, and small files, B = 16, the swarm self-sustainability is around 0.1 and the publisher

needs to frequently provide blocks that are unavailable among the peers. As the popularity of the files increases, swarm

self-sustainability increases and content is available even in the absence of the publisher. For λ = 8 peers/min, the fraction

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

 0 1 2 3 4 5 6 7 8

S
w

ar
m

 S
el

f-
su

st
ai

na
bi

lit
y

System Load (ρ)

Arrival Rate (peers/min)

Recursive Algorithm (B=16)
Recursive Algorithm (B=50)

Recursive Algorithm (B=100)
Recursive Algorithm (B=200)

Simulation (B=16)
Simulation (B=50)

Simulation (B=100)
Simulation (B=200)

B=1
6B=5

0
B=1

00B=2
00

Figure 4: Model validation. Swarms-self sustainability as a function of the system load. Results obtained with recursive
algorithm and simulations (with 95% confidence intervals) are plotted with dotted and solid lines, respectively.

of time at which the publisher needs to provide blocks to peers is close to zero.

Figure 4 indicates that the results obtained with our model predict the simulation well. Even assuming that the mean

download times of all blocks are the same (µh = µ, for 1 ≤ h ≤ B) in the model, it was able to capture the trend of

self-sustainability observed in our simulations. We repeated the simulations for B = 16, with heterogeneous peer upload

capacities, the upload rate distribution taken from the measured data used to generate Figure 1 in [22] (normalized to a

mean upload rate of 39KBps) and our results did not qualitatively change (details in [16]).

Consider now the impact of file size on swarm self-sustainability. Figure 4 shows that for a fixed content popularity,

as the file size increases, self-sustainability increases. This is in accordance to Theorem 5.1, and reflects the fact that, as

the file size is increased, peers stay longer in the system and the coverage, defined as the mean number of users in the

system, increases. The higher the coverage, the higher the self-sustainability of the swarm. In fact, as file size increases,

the number of blocks that needs to be maintained by the publisher increases linearly but the availability gain increases

exponentially [15].

6.3 Popularity to Attain High Self-Sustainability

We now address the following question: what is the minimum file popularity (or load) needed to attain a given self-

sustainability? Answering this question is useful not only for publisher dimensioning but also for other strategic decisions

such as how to distribute and bundle files across multiple swarms [15].

Recall that the load is defined as ρ = λ/µ. Figure 5 shows the minimum load, ρ?, necessary to achieve high self-

sustainability, A? (A? = 0.9, 0.999), for file sizes varying between 2MB and 256MB (B = 8, . . . , 1, 000). The solid

curves are obtained using the recursions contained in Theorem 4.1, eq. (15). The dotted curves are obtained using the

approximation (21). Figure 5(a) suggests that when the goal is to find the minimum popularity to attain a high self-

sustainability level, equation (21) can be used to approximate ρ?. However, if the goal is to compute self-sustainability

under different loads and for different files sizes, as illustrated by Figure 4, the recursion provided by Theorem 4.1 needs

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 10 100 1000

recursion

approx.

load to attain
self-sustainability of 0.9

load to attain
self-sustainability of 0.999

approx.

recursion

 1 1.0

0.1

0.01
100 600

file size (number of blocks)

lo
ad

 t
o

 a
tt

ai
m

 d
es

ir
ed

 s
el

f-
su

st
ai

n
ab

ili
ty

 le
ve

l

(a)

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0 100 200 300 400 500 600 700 800 900 1000

m
ea

n
 n

u
m

b
er

 o
f

u
se

rs
 t

o
 a

tt
ai

n
d

es
ir

ed
 s

el
f-

su
st

ai
n

ab
ili

ty
 le

ve
l

file size (number of blocks)

mean number of users to attain
self-sustainability of 0.9

mean number of users to attain
self-sustainability of 0.999

mean number of users to attain
self-sustainability of 0.99

(b)

Figure 5: Larger files yield increased availability. (a) x-axis, file size. y-axis, necessary load (ρ? = λ/µ) to attain self-
sustainability greater than 0.9 (red) and 0.999 (blue). The results obtained using the approximation (21) are also shown.
(b) the mean number of users in the system, Bρ?, to attain a desired self-sustainability level.

to be used.

Figure 5(a) indicates that the popularity, ρ?, needed to attain a high degree of self-sustainability increases as the file

size, B, decreases. In particular, the zoom in the figure shows that log ρ? is linear in log B. The comments made at the end

of §6.2 to explain Figure 4 also apply here. Peers take longer to download larger files, which increases block availability.

Nevertheless, the benefits of leveraging peer-to-peer swarming can be noted even for small files. Figure 4(a) shows that

for a file of 4MB (B = 16), an arrival rate of 8 peers/min (which corresponds to a load of 0.8) already yields a very high

self-sustainability.

More insights on how the file size impacts self-sustainability are obtained from Figure 4(b). Figure 4(b) plots the

mean number of users in the system, also referred to as the mean coverage [15], necessary to attain a high level of self-

sustainability. The curves in Figure 4(b) correspond to the the respective ones in Figure 4(a) multiplied by B. The main

insight shown in this example is that the coverage necessary to attain a given self-sustainability level slowly increases as a

function of B. As the file size increases, a slightly larger population suffices to attain a given self-sustainability level. For

instance, for a file of size 10 a coverage of 20 is necessary to attain self-sustainability of 0.999, whereas a coverage of 29

suffices to achieve the same self-sustainability if the file has 1,000 blocks.

7 Limitations and Caveats

Next, we discuss the simplifications adopted to yield a tractable model.

Uniformity and independence assumptions: In the performance model presented in §3.2 we assume that

the signatures of users are drawn uniformly and independently at random. In particular, we do not account for the

correlations among users’ signatures. Although such correlations are present in practice, our simulations have indicated

that the independence assumption is appropriate in order to capture the self-sustainability of swarms.

In the user dynamic model presented in §3.1 we make the following assumptions: (i) peers arrive according to a

16

Poisson process with rate λ (steady state assumption), (ii) the download times of all blocks have the same mean, 1/µ

(smooth download assumption) and (iii) users leave the system immediately after completing their downloads, γ = ∞

(self-regarding users assumption). We discuss each of them in turn.

Steady state assumption: It has been shown in [15, Section 4.3.4] that a vast number of long-lived swarms have

relatively stable mean arrival rates over periods of months. Our model can be used to predict the self-sustainability of

such swarms.

Smooth download assumption: Under this assumption, the capacity of the system scales perfectly with the

number of users. Our simulations indicate that the mean download time of the first and last blocks are slightly larger

than the others. Although our model has flexibility to capture such asymmetries (see observation two in §4), we show that

their implications in the estimates of self-sustainability are not significant (see §6.2.1).

Self-regarding users assumption: Our model has flexibility to account for users that stay in the network after

completing their downloads. However, in todays’ BitTorrent users have no incentive to stay in the system after obtaining

the files of their interest. Therefore, we focus on the worst case scenario in which users, not having incentives to linger in

the system after completing their downloads, depart immediately.

Finally, in our simulations we consider a publisher that is always online and that behaves like a typical peer.

Typical peer-like publisher: Our simulations indicate that if the publisher has the same capacity as typical peers,

the smooth download assumption holds and the swarm self-sustainability estimates of our model are accurate. Coping with

intermittent publishers and devising dynamic bandwidth allocation strategies according to which the smooth download

assumption holds is non trivial, and is subject of future work.

8 Related Work and Discussion

Modeling of Peer-to-Peer Swarming Systems

The literature on availability [19], performance [24] and incentive issues [22] in BitTorrent-like swarming systems is vast.

Nevertheless, to our knowledge this paper presents the first analytical model for publisher dependency estimation. We

are unaware of related analytical work that analyzed swarm self-sustainability taking into account the fact that files are

divided into multiple blocks, a very fundamental characteristic of these systems.

For large populations, Massoulié and Vojnovic [14] used a coupon collector model to show that asymptotically the

distribution of blocks across the population is well balanced, and does not critically depend on the block selection algorithm

used by the peers. Qiu and Srikant [24] and Fan et al. [9] also considered the large population regime, and used fluid

approximations and differential equations to model the system assuming that the efficiency is always high. In this paper we

are particularly interested in the small population regime. For small populations, Markov Chain (MC) models have been

proposed by Veciana et al. [35], providing insights on the performance of the system but not dealing with the problem of

availability of blocks among peers. Reittu et al [25], using a different model, studied the dissemination of a two-block file

in a closed network accounting for the availability of the blocks. In this paper, we consider an open network and propose

17

a model which can be used to estimate self-sustainability of files of arbitrary size.

In this work we studied the implications of the content popularity on the self-sustainability of swarms. In a real

time setting, Leskela et al. [13] pointed out a phase transition in the stability of the peer-to-peer system as a function of

the content popularity. In contrast, our system is always stable. Norros et al. [20] imply a phase transition of the mean

broadcast times as a function of the departure rate of seeds. In this paper we are concerned with self-sustainability.

Hybrid Peer-to-Peer Swarming Systems

The literature on the use of peer-to-peer swarming systems for enterprise content delivery is rapidly growing [7, 21, 26].

The methodology usually consists on defining an optimization problem to be solved by the publishers and then showing

how different system parameters affect the optimal strategy for bandwidth allocation. The approach we take in this paper

is different. We are interested in the minimum fraction of time that the publisher must be active so as to guarantee that

all blocks are always available.

Ioannidis et al. [10] study how fast does the bandwidth available at the server has to grow as the number of users

increases. For this purpose they consider two query propagation mechanisms, the random walk and the expanding ring.

Here, on the other hand, we assume that peers can always find the blocks they need in case they are available. While [10]

focus on the control plane and in asymptotic analysis, here we focus on the data plane and account also for small files.

Menasche et al. [15], Altman et al. [34] and Susitaival et al. [29] propose models for content availability in BitTorrent

without accounting for the fact that files are divided into blocks. Our model differs from [15, 29, 34] in that we (a)

consider an hybrid peer-to-peer system, in which a publisher is always available and (b) account for the fact that the file is

divided into blocks. Finally, explicit scheduling of blocks exchanges to minimize peer download times was studied by

Mundinger et al. [18]. In this paper we assume that peers exchange blocks using only local information, as in BitTorrent.

Balls and Bins

The derivation of some of our results fit into the balls and bins framework. Each user is allocated a set of blocks (balls)

each of which must correspond to a different identifier (bin). In the context of balls and bins, a set of balls each of which

must be allocated in a different bin is referred to as complex [11]. Previous work on the allocation of complexes into bins

appears in Saidbek et al. [17], Kolchin et al. [11, Chapter VII], and references therein. In particular, the definition of

ψh(i,m) in this paper was inspired by [5, Figure 1].

In a peer-to-peer setting, balls and bins were used by Simatos et al. [28] to study the duration of the regime during

which the system is saturated because capacity is smaller than demand. The scenario studied in this paper differs from

[28] in several aspects. For instance, [28] considers a finite population of peers.

9 Conclusion

Peer-to-peer swarming systems are a powerful tool for content delivery, as reflected by the immense popularity of BitTorrent

and the vast literature on the topic. However, most works in this area have focused on the dissemination of popular content,

18

for which peer-to-peer systems are naturally suitable. In this work, we investigate the dependency of peers on a publisher

that leverages peer-to-peer techniques for the dissemination of both popular and unpopular content. In particular, the

latter deserve special attention, since unpopular content can represent a significant fraction of demand and revenue [3]. We

believe that devising strategies for disseminating large catalogs of files leveraging peer-to-peer techniques is an important

and interesting research area, and we see our model as a first attempt to shed light into the intrinsic advantages and

limitations of peer-to-peer swarming systems for the dissemination of such catalogs.

References

[1] Torrent Finder. http://torrent-finder.com/.

[2] Amazon. Using BitTorrent with Amazon S3. http://aws.amazon.com/.

[3] Anderson, C. The Long Tail: Why the Future of Business is Selling Less of More. Hyperion, 2006.

[4] Bharambe, A., Herley, C., and Padmanabhan, V. Analyzing and improving BitTorrent network performance
mechanisms. In Infocom (2006).

[5] Burger, A. P., and van Vuuren, J. H. Balanced minimum covers of a finite set. Discrete Mathematics 307
(2007), 2853–2860.

[6] Cohen, B. Incentives build robustness in BitTorrent. In P2PECON (2003).

[7] Das, S., Tewari, S., and Kleinrock, L. The case for servers in a peer-to-peer world. In ICC (2006).

[8] de Souza e Silva, E., Leao, R. M. M., and Figueiredo, D. R. An integrated modeling environment for
computer systems and networks. Performance Evaluation Review 36, 4 (2009), 64–69.

[9] Fan, B., Chiu, D.-M., and Lui, J. Stochastic differential equation approach to model peer to peer systems. In
ICC (2006).

[10] Ioannidis, S., and Marbach, P. On the design of hybrid peer-to-peer systems. In SIGMETRICS (2008).

[11] Kolchin, V., Sevastyanov, B., and Chistyakov, V. Random Allocations. V. H. Winston and Sons, 1978.

[12] Legout, A., Liogkas, N., and Kohler, E. Rarest first and choke algorithms are enough. In IMC (2006).

[13] Leskela, L., Robert, P., and Simatos, F. Stability properties of linear file sharing networks. arXiv.org (2009).

[14] Massoulie, L., and Vojnovic, M. Coupon replication systems. In SIGMETRICS (2006).

[15] Menasche, D., Rocha, A., , Li, B., Towsley, D., and Venkataramani, A. Content availability and bundling
in swarming systems. In CONEXT (2009).

[16] Menasche, D. S., Rocha, A. A., de Souza e Silva, E., Leao, R. M., Towsley, D., and Venkataramani,
A. Estimating self-sustainability in peer-to-peer swarming systems. UMass Technical Report (2010).

[17] Mirakhmedov, S. S., and Mirakhmedov, S. M. On asymptotic expansion in the random allocation of particles
by sets. Journal of Theoretical Probability (2009).

[18] Mundinger, J., Weber, R., and Weiss, G. Optimal scheduling of peer-to-peer file dissemination. Journal of
Scheduling (2008).

[19] Neglia, G., Reina, G., Zhang, H., Towsley, D., and Arun Venkataramani, J. D. Availability in Bittorrent
systems. In IEEE Infocom (2007).

[20] Norros, I., Prabhu, B. J., and Reittu, H. On uncoordinated file distribution with non-altruistic downloaders.
In ITC-20 (2007).

[21] Peterson, R. S., and Sirer, E. G. Antfarm: efficient content distribution with managed swarms. In NSDI (2009).

[22] Piatek, M., Isdal, T., Anderson, T., Krishnamurthy, A., and Venkataramani, A. Do incentives build
robustness in Bittorrent? In 4th USENIX Symposium on Networked Systems Design & Implementation (2007).

19

[23] Pollack, P. Warner Bros and P2P. http://arstechnica.com/news.ars/post/20060130-6080.html.

[24] Qiu, D., and Srikant, R. Modeling and performance analysis of Bittorrent-like peer to peer networks. In SIGCOMM
(2004).

[25] Reittu, H., and Norros, I. Toward modeling of a single file broadcasting in a closed network. In IEEE Workshop
on Spatial Stochastic Models in Wireless Networks (2007).

[26] Rimac, I., Elwalid, A., and Borst, S. On server dimensioning for hybrid peer-to-peer content distribution
networks. In P2P’08 (2008).

[27] Schneider, C. Symbolic summation assists combinatorics. Sem.Lothar.Combin. 56 (2007), 1–36.

[28] Simatos, F., Robert, P., and Guillemin, F. Analysis of a queueing system for modeling a file sharing principle.
In SIGMETRICS (2008).

[29] Susitaival, R., Aalto, S., and Virtamo, J. Lecture Notes in Computer Science. Springer, 2006, ch. Analyzing
the dynamics and resource usage of P2P file sharing by a spatio-temporal model.

[30] Torrent Freak. Twitter uses BitTorrent for server deployment. http://torrentfreak.com/
twitter-uses-bittorrent-for-server-deployment-100210/.

[31] Ubuntu. Download Ubuntu using BitTorrent. http://torrent.ubuntu.com:6969/.

[32] Wikipedia. Boole’s inequality. http://en.wikipedia.org/wiki/Boole%27s_inequality.

[33] Wilf, H. Generatingfunctionology. Acad. Press, 1994.

[34] Wong, S., Altman, E., and Ibrahim, M. P2P networks: interplay between legislation and information technology.
In INRIA 6889 (2009).

[35] Yang, X., and De Veciana, G. Service capacity of peer to peer networks. In INFOCOM (2004).

[36] Zeilberger, D. The method of creative telescoping. Journal of Symbolic Computation archive 11 (1991), 195–204.

A An Expression of P (V = B|N = n)

We now show how to obtain P (V = B|N = n) from (2). Recall that, given an upper layer state n, Ω is the lower layer sample space.

Denote by S the random variable that represents the lower layer state, and by s its realization. Then

P (V = B|N = n) =
X

s:V =B,s∈Ωn

P (S = s|N = n)
(2)
=

X

s:V =B,s∈Ωn

1/|Ω| (23)

Therefore, the problem of computing P (V = B|N = n) is reduced to that of counting the states in which all blocks are available

among the peers. Using the inclusion/exclusion principle, P (V = B|N = n) = |Ωn|−1PB−1
i=0 (−1)i

`

B
i

´

QB−1
j=1

`

B−i
j

´nj . In general,

P (V = v|N = n) is also obtained using the inclusion/exclusion principle [33, Section 4.2].

B Recursion to Compute ψh(k, v)

Consider the scenario where k blocks are available among the peers and an additional user contributes h blocks. ψh(k, v) is the

probability that v blocks are available among the peers after accounting for the blocks contributed by the additional user. ψh(k, v)

can be recursively computed,

ψh(k, v) = ψh−1(k, v − 1)
B−v−h

B−h+1
+ ψh−1(k, v)

v

B−h+1
, 0 ≤ k, v ≤ B, 0 < h ≤ B (24)

The base cases are ψ0(k, v) = 0 if v 6= k and ψ0(k, v) = 1 if v = k.

For presentation convenience, we consider an arbitrary ordering of the h blocks contributed by the additional user. After

contributing the first h − 1 blocks, there are two cases to consider, (i) v blocks are available among the peers [and the hth block

overlaps with a previously available block, an event which happens with probability v/(B−h+1)] or (ii) v − 1 blocks are available

[and the hth block does not overlap with previously available blocks, an event which happens with probability (B−v−h)/(B−h+1)].

The above recursion is convenient to avoid numerical problems since it only involves additions and multiplications of probabilities.

20

C Proof of Lemma 4.1

Proof. We now show that (11) and (9) are equivalent. To this purpose, we consider an extended representation of the upper layer

states. In such representation, the upper layer state, n′, is defined as follows.

Consider the users in the system ordered uniformly at random. The number of blocks owned by the ith user is denoted by n′
i.

The upper layer state is represented by vector n′. The dimension of n′ is 1 × n, where n is the number of users in the system.

Note that n is inferred from n′. Let nl(n
′) be the number of users that have l blocks when the state is n′. The steady state

probability of state n′ is π(n′), π(n′) =
QB−1

l=0 [ρnl(n
′)

nl(n
′)! e

−ρ]/n!; any permutation of the users in the system is equally likely. The

steady state probability of state n′, conditioned on the event that there are n users in the system, is

π(n′)
P

∀n′:|n′|=n π(n′)
=

QB−1
l=0 [ρnl(n

′)

nl(n
′)! e

−ρ]/n!

e−Bρ(Bρ)n/n!
=

1

Bn
QB−1

l=0 nl(n′)!
(25)

The first equality follows from the fact that a convolution of B Poisson processes with rate ρ is a Poisson process with rate Bρ.

The key idea of the proof consists of partitioning the state space into sets Gh(n), 0 ≤ h ≤ B−1, 0 ≤ n. Set Gh(n) contains states

in which there are n users in the system and n′
n = h. Gh(n) is defined as Gh(n) = {n′ : n′

n = h and 0 ≤ n′
j ≤ B − 1, 1 ≤ j < n}.

The set containing all states in which there are n users in the system, G(n), is

G(n) = ∪B−1
h=0 Gh(n) = {n′ : 0 ≤ n′

j ≤ B − 1, 1 ≤ j ≤ n} (26)

Note that Gh(n) is obtained from G(n − 1) by adding to each element of G(n − 1) a user that owns h blocks,

Gh(n) = {(n′, 0) + h1n : n′ ∈ G(n − 1)} (27)

1n denotes a 1 × n vector in which all elements equal zero, except element n, which equals one. Let p(v|n′) be the probability of v

blocks being available among the peers when the upper layer state is n′. If n′ ∈ Gh(n) (n > 0),

p(v|n′) =

B
X

k=0

p(k|n′ − h1n)ψh(k, v), n′ ∈ Gh(n) (28)

According to definition (9),

pn(v)=

2

4

X

n′∈G(n)

p(v|n′)π(n′)

3

5

.

2

4

X

n′∈G(n)

π(n′)

3

5 =
X

n′∈G(n)

p(v|n′)
1

Bn
QB−1

l=0 nl(n′)!
(29)

where the first and second equalities follow from (26) and (25), respectively. Hence,

pn(v) =

B−1
X

h=0

X

n′∈Gh(n)

p(v|n′)
1

Bn
QB−1

l=0 nl(n′)!
=

B−1
X

h=0

X

n′∈Gh(n)

B
X

k=0

p(k|n′ − h1n)ψh(k, v)
1

Bn
QB−1

l=0 nl(n′)!
(30)

=

B−1
X

h=0

B
X

k=0

X

m′∈G(n−1)

p(k|m′)
1

Bn−1
QB

l=0 n′
l!

| {z }

pn−1(k)

ψh(k, v)
1

B
=

B−1
X

h=0

B
X

k=0

pn−1(k)ψh(k, v)
1

B
(31)

where the first, second and third equalities follow from (26), (28) and (27), respectively. Note that the summands in (31) in which

h > v or k ∈ [0, v − h − 1] ∪ [v + 1, B] are equal to zero, since in these cases ψh(k, v) = 0. Therefore, (31) yields (11).

D Probabilistic Derivation of (13)

Next, we provide a probabilistic derivation of (13). An algebraic proof can be obtained using the Sigma package [27], applying a

paradigm called creative telescoping [36].

21

Proof. Henceforth, we consider the case v < B (the case v = B follows similarly). The probabilistic interpretation for (13) follows

from the connection between ψh(k, v) and the hypergeometric distribution. Suppose we have an urn containing B balls, B − k of

which are white (unavailable blocks) and k are black (available blocks). ψh(k, v) is the probability of selecting without replacement

h balls, of which v − k ≤ h are white.

Consider now another experiment, namely selecting without replacement all balls from the urn. Let Jw be the round in

which the wth white ball is selected, 0 < J1 < J2 < . . . < JB−k < B + 1. Let Wb be the number of black balls selected

between the bth and b + 1th white, plus one. Equivalently, Wb is the number of elements in the set S = {n ∈ {0, . . . , B} :

exactly b white balls are selected before ball n}. Then W0 = J1, W1 = J2 − J1, . . ., Wk−1 = Jk − Jk−1, and WB−k = B + 1 − Ji.

Clearly,
PB−k

b=0 Wb = B + 1. By symmetry, E[Wb] = (B + 1)/(B − k + 1) (0 ≤ b ≤ B − k).

Now let v − k be given, v − k ∈ {0, 1, . . . , v}. Let 1h be the indicator equal to 1 if exactly v − k white balls are selected

among the first h balls. Note that E[1h] = ψh(k, v). Also, from the definition of Wv−k, we have Wv−k =
PB

h=0 1h. Therefore,

E[Wv−k] =
PB

h=0 E[1h] =
PB

h=0 ψh(k, v) = (B + 1)/(B − k + 1).

E Proof of Theorem 4.1

Proof. Substituting (13) into (12) yields,

pn(v)=

8

<

:

1/Bn, n ≥ 1, v = 0 (i)
Pv

k=0 pn−1(k)(B + 1)/(B(B − k + 1)), n ≥ 1, B > v > 0 (ii)
(32)

pn(B) = 1 −
PB−1

l=0 pn(l), n ≥ 1. The base cases are p0(0) = 1 and p0(v) = 0 if v 6= 0. In case (ii), pn(v) = pn−1(v)(B + 1)/(B(B −

v + 1)) +
Pv−1

k=0 pn−1(k)(B + 1)/(B(B − k + 1)) = pn−1(v)(B + 1)/(B(B − v + 1)) + pn(v − 1) which yields (15).

F Derivation of (18)

Proof. We now show that (18) follows from (17). The case v = B follows trivially. For v < B, we show that (18) satisfies (17), i.e.,

pn(v) − pn−1(v)(1/(B − v + 1)) = pn(v − 1),

pn(v) − pn−1(v)(1/(B − v + 1)) =

B

v

!

v
X

l=0

v

l

!

(−1)l(B − v + l + 1)−n −
`

B
v

´

Pv
l=0

`

v
l

´

(−1)l(B − v + l + 1)−n+1

B − v + 1
(33)

=

B

v

!

v
X

l=0

v

l

!

(−1)l+1(B − v + l + 1)−n l

B − v + 1
=

B

v − 1

!

v−1
X

l=0

v − 1

l

!

(−1)l(B − v + l + 2)−n = pn(v − 1) (34)

G Expression of pn(v) When γ = ∞
If γ = ∞, the closed-form expression for pn(v) is pn(v)=

`

B
v

´ `

1+B
B

´nPv
l=0

`

v
l

´

(−1)l(B − v + l + 1)−n, n ≥ 1, B > v ≥ 0, and

pn(B) = 1 −
PB−1

v=0 pn(v).

Proof. We now show that pn(v) follows from (15). The cases v = B and v = 0 follow trivially. For 0 < v < B, we show that

pn(v) − pn−1(v)((B + 1)/(B(B − v + 1))) = pn(v − 1),

pn(v) − pn−1(v)((B + 1)/(B(B − v + 1)))=

B

v

!

„

1 + B

B

«n
"

v
X

l=0

v

l

!

(−1)l

„

(B − v + l + 1)−n− (B − v + l + 1)−n+1

B − v + 1

«

#

=

B

v − 1

!

„

1 + B

B

«n v−1
X

l=0

v − 1

l

!

(−1)l(B − v + l + 2)−n = pn(v − 1)

22

