
Impact of Operating Systems on Wireless Sensor

Networks (Security) Applications and Testbeds

Cíntia B. Margi,

Bruno T. de Oliveira

and Gustavo T. de Sousa

Escola de Artes, Ciências e Humanidades

Universidade de São Paulo

São Paulo, Brazil

Email: {cintia,brunotrevizan,

gustavot}@usp.br

Marcos A. Simplicio Jr,

Paulo S. L. M. Barreto

and Tereza C. M. B. Carvalho

PCS - Escola Politécnica

Universidade de São Paulo

São Paulo, Brazil

Email: {mjunior,pbarreto,

carvalho}@larc.usp.br

Mats Näslund

and Richard Gold

Ericsson Research

SE-16480

Stockholm, Sweden

Email: {mats.naslund,

richard.gold}@ericsson.com

Abstract—Wireless Sensor Networks (WSNs) are a valuable
technology to support countless applications in different areas.
Given the WSN nodes resource constrained characteristics,
designing energy-aware applications, communication protocols
and security mechanisms are critical. The operating system (OS)
running on the WSN node also interferes with the node overall
behavior, and its energy consumption. In this paper, we develop
a comparison of two different operating systems (Contiki and
TinyOS) running on the same hardware platform (Crossbow
TelosB). Using a set of tasks, which include sensing, commu-
nication and security mechanisms, we evaluate their behavior in
terms of energy consumption and execution time.

I. I

Wireless Sensor Networks (WSNs) are a valuable technol-

ogy to support the development of new applications in many

different areas, such as: environmental and habitat monitoring,

surveillance, indoor climate control, structural monitoring,

medical diagnostics, disaster management, and so on [1], [2].

They can be defined as a special type of multi-hop ad-hoc net-

works, and participating nodes are typically battery operated,

thus having access to a limited amount of energy. Moreover,

these nodes often exhibit additional constrains, such as limited

processing, storage and communication capabilities [3].

In several WSN-based applications, the nodes are left unat-

tended for their whole operational lifetime after deployment.

Moreover, the sensing and processing tasks the node will

execute, as well as the overhead introduced by the node’s

operating system (OS), must be accounted for in the energy

consumption. Hence, understanding the impact of processing

and communications tasks on the nodes’ energy usage provides

the necessary knowledge to choose the appropriate duty cycle.

This approach allows the sensor network node to alternate be-

tween active, idle and low-power periods, thus saving energy.

Indeed, the careful choice of the duty cycles is a common

power conservation approach in real deployments [4], [5].

Most WSN deployments do not consider security among

their requirements because of the execution time/energy over-

head it adds to the system; hence, security tends to be

considered simply as an undesirable “extra cost” in such

constrained environments. However, when targeting WSNs

for health applications or applications that monitor sensi-

tive information, it is important to consider confidentiality;

therefore, in these scenarios, the deployment of encryption

algorithms is essential. Furthermore, in many situations data

integrity and authenticity are also critical, since the existence

of invalid data could lead to mistaken actions with severe

consequences; since the origin of such invalid information

can be either natural (caused by hardware malfunctioning,

transmission errors, etc.) or intentional (e.g., generated by fake

sensors introduced in the network with malicious intent), the

deployment of Message Authentication Codes (MACs) is also

made necessary. Finally, since such algorithms depend on the

existence of secret keys for their functioning, applications need

to deal with the distribution of such keys, which is a especially

challenging issue in WSNs [6].

Due to the constraints intrinsic to WSNs, security mecha-

nisms employed must be extremely lightweight. The literature

includes some comparative evaluations of traditional hash

functions, block and stream ciphers [7], [8], [9], [10] in sensor

networks. The main goal of these analyses is to determine

the most adequate algorithms for deployment in WSNs, con-

sidering both efficiency and security requirements. Similarly,

many authors have tried to identify efficient implementations

of Elliptic Curve Cryptography (ECC) for such constrained

scenarios [11], [12], [13]. The results obtained in these studies

usually show that the deployment of general-purpose algo-

rithms leads to the need of choosing performance over security

level or vice-versa. For example, after analyzing the efficiency

of several traditional block ciphers in WSNs, Law et al. [7]

recommends AES [14] and Skipjack [15] for scenarios with,

respectively, high and low security requirements. Due to this

urge for security in many important scenarios and to the need

of sufficiently lightweight solutions, some algorithms specifi-

cally designed for WSNs have been proposed and analyzed in

the last years, such as TinyTate [11] (for key management),

C [16], [17] (block ciphers) and M [18] (a MAC

algorithm).

Despite their importance for providing further information

about the impact of security mechanisms on WSNs, these



studies lack a more detailed comparison with core tasks not

related to security, such as sensing and transmitting data. In

this work, we focus on the performance evaluation of basic

tasks (such as sensing and communication) and the execution

of security algorithms on our WSN testbed, as well as the

overhead introduced by the Operating System. We consider the

same set of experiments on both TinyOS [19] and Contiki [20]

operating systems, running on the Crossbow TelosB sensor

node. Since the same hardware platform is used, we are

able to see how the tasks behave in the different OS, and

how that affects the performance of the sensors. Our metrics

are the execution time and energy consumption of common

tasks (communication and sensing), which are compared with

encryption algorithms (namely, C, Skipjack and AES),

Message Authentication Codes (M and CMAC [21]),

and authenticated-encryption schemes (OCB [22] and L-

S [18]). Therefore, our main contribution in this work is

the performance analysis of main WSN tasks (i.e., sensing,

processing and communication) running in two different OS’s

in the same hardware platform.

The remainder of this paper is organized as follows. Sec-

tion II details our testbed. In Section III the performance

evaluation methodology is described. Our results and analysis

of the different tasks on both OS are presented in Section IV.

We conclude the paper and discuss future work in Section V.

II. TW S N T

Our testbed is composed by Crossbow TelosB [23] motes,

and two operating systems: TinyOS [19] 2.0.2 and Contiki [20]

2.3. This section gives an overview of these components.

A. Operating Systems

TinyOS [19] is an event-driven operating system for net-

worked applications in wireless embedded systems, with a

component-based architecture. It is based on the nesC pro-

gramming language [24], and its core components require only

400 bytes of memory (data and instruction).

Contiki [20] is a lightweight operational system developed

for constrained platforms, such as sensors nodes. Its basic

configuration fits in less than 2 KiB of RAM and 40 KiB

of ROM, and provides two communication stacks (µIP [25]

and Rime [26]) as well as multi threading functionalities. All

its modules, drivers and user applications are implemented in

C programming language.

While TinyOS is sometimes considered a de facto standard,

Contiki has a much easier learning curve for the developer,

since it is based on a widely known programming language.

B. Hardware

The Crossbow TelosB [23] sensor node is a low power IEEE

802.15.4 compliant wireless platform, which includes temper-

ature, humidity, visible light and light (including infra-red)

sensors, a 16-bit 8 MHz Texas Instruments micro-controller

with 10 KiB of RAM and 48 KiB of Flash Memory.

For the sensing tests, the humidity and temperature sensor

SHT11 [27] was used. The communication interface is a one-

wire digital connection for sending and receiving data [27].

In order to acquire data, the micro-controller sends a request

containing parameters such as type (temperature or humidity),

sample resolution, and control information, and then waits for

the sensor to send a read command. The SHT11 transmits the

acquired data along with a 1-byte CRC (Cyclic Redundancy

Check). Readings can take up to 320ms, depending on the type

and resolution. The default resolution for both OS drivers is

14 bits for temperature and 12 bits for humidity, thus allowing

a fair comparison of the results obtained in this work.

The TelosB platform has an IEEE 802.15.4 compliant radio

transceiver, the Chipcon CC2420. The device is a low power

CSMA/CA (Carrier Sense Multiple Access with Collision

Avoidance)-based RF transceiver providing a maximum band-

width of 250 Kbps when operating at the unlicensed 2.4 GHz

frequency band [28]. The CC2420 is a packetizing radio,

meaning that it takes the data corresponding to the payload

and adds its own preamble, header and CRC. When the

packet arrives at its destination, the receiver removes those

fields and and checks the CRC before the data is sent to

the micro-controller. The CC2420 is very flexible, allowing

the implementation of a number of Media Access Control

protocols on top of the basic CSMA/CA MAC1 layer.

III. M

Our performance evaluation approach is similar to the work

done by Margi et al. [29], where the key idea is to consider

the elementary tasks forming the duty cycle of a WSN node:

(1) sensing temperature and humidity; (2) processing data

(i.e., applying security algorithms); (3) data transmission and

reception.

The metrics considered in this performance evaluation are

energy consumption and execution time (or duration) of a

given task. In order to obtain an accurate measurement of

the energy consumption, we performed direct measurements

on the TelosB. We used the Agilent E3631A [30] power

supply configured to provide 3.00V to power the TelosB.

The Agilent 34401A [31] digital multimeter (DMM) was

used to measure the current flow as the different hardware

subsystems become active/inactive during the tasks’ execution.

Figure 1 shows a block diagram describing our measurement

setup: a GPIB (General Purpose Interface Bus - IEEE 488

standard) cable was used to connect the Agilent 34401A DMM

to a computer running the software LabView [32], which

collects and records the measurement samples. The DMM was

configured to provide a reading rate of 60 Hz.

In this measurement scenario, we ran each task considered

and measured the current drained. We obtained the charge

via time integration of the current and then, since voltage is

constant, we obtain the energy consumption of each task. We

also measured the current drained when the system was in

idle (i.e., no particular tasks being executed), obtaining the

threshold that is deduced from the measurements. Therefore,

1MAC is an acronym used both for Message Authentication Code (in the
security field) and for Medium Access Control (in the networking area).
Aiming to avoid confusion, we refer to MAC algorithms for the former and
MAC layer when referring to the latter.



Multimeter

+ +

−

−
TelosB

Agilent 34401A

Agilent E3631A

Power Supply

GPIB cable

Fig. 1. Measurements’ setup

the system’s overall energy consumption is given by the energy

consumed by each task added to the energy consumed when

the system is idle.

The tasks evaluated in this work are the following:

• Sensing: humidity, temperature, and light;

• Encryption: C-2, AES and Skipjack;

• MAC calculation: CMAC and M;

• AEAD (Authenticated-Encryption Schemes): LS

and OCB;

• Communication: transmission and reception of 12 bytes

of data as well as idle listening.

The algorithms for confidentiality (namely, C-2,

AES and Skipjack), integrity and authenticity (namely, M-

 and CMAC, using the C-2 as underlying block

cipher), as well as the confidentiality and integrity/authenticity

algorithms (namely LS and OCB, also using the

C-2), have been developed using the C language. We

tested some variations on the coding in order to identify

which would be the most optimized constructions for each

algorithm. For example, we evaluated the impact of adopting

tables with pre-computed results and tested versions of the

cipher optimized for a single key size. The most efficient

versions obtained from similar coding strategies are the ones

considered in the benchmark.

The results presented in this work represent the average for

each execution set (10 samples acquired), with 99% confidence

interval.

IV. P E

In this section we present the performance evaluation for

the different tasks: sensing, processing, and communication.

A. Sensing Tasks

In order to obtain readings regarding only the sensing tasks,

we turned off the radio. Observe that the readings are relative

to the idle energy consumption value.

Table I presents the average execution time (in milliseconds)

and average energy consumption (in microjoules) for the

sensing tasks running on TelosB. Regarding the humidity mea-

surements, we observe that Contiki takes 74.6% of the time

TinyOs needs to obtain a reading. However, TinyOS consumes

only 24.9% of the total energy Contiki does to complete

the task. Concerning the temperature readings, Contiki takes

85.6% of the time TinyOS does but, on the other hand, TinyOS

consumes 24.2% of the energy Contiki does.

The two OS evaluated behave differently to obtain the sens-

ing readings. Contiki turns on the MSP430 micro-controller

analog-to-digital converter (ADC) at system initialization, and

TABLE I
A     ,  99% 

,      TB.

Contiki TinyOS

Task Duration Energy Duration Energy
(ms) (µJ) (ms) (µJ)

Humidity 78 ± 0 436 ± 4 104 ± 14 108 ± 3

Temperature 232 ± 9 1370 ± 7 271 ± 6 331 ± 7

Light − − 59 ± 5 68 ± 8

since the light sensors are two photo-diodes connected to the

ADC, the cost of a light reading is very low (just a matter

of reading some registers), and are not presented here because

they are included in the idle value. On the other hand, TinyOS

turns on the ADC converter when needed, causing the light

readings to drain more current than the idle mode, and take

longer time to be executed.

The results shown in Table I reflect the differences between

implementations from both OS core and hardware drivers.

Even when hardware restrictions are the same, the OS over-

head is different. TinyOS is more energy efficient than Contiki

concerning sensing tasks, but Contiki takes less time than

TinyOS to obtain a sensing reading.

B. Processing Tasks

Processing tasks in WSNs are usually related to the OS

maintenance tasks or to the processing of sensed data. In our

particular case, we decided to look at security algorithms tasks,

which are usually resource demanding.

The reduced availability of resources on sensors imposes

several limitations over cryptographic algorithms that can be

effectively deployed in these platforms. According to the re-

sults presented by Law et al. [7], the most promising solutions

to address confidentiality in such constrained platforms are

AES [14] and Skipjack [15] for scenarios with, respectively,

high and low security requirements. More recently, however,

two versions of the C block cipher have been proposed

for such scenarios [16], [17]. Roman et al. [8] present an

extensive survey of existing implementations of cryptographic

primitives for sensor networks, which provides performance

measurements of both hardware and software implementations

of ciphers, hash functions and elliptic curve algorithms. How-

ever, the work focus on processing time and memory footprint

of such implementations, lacking a further evaluation of their

energy consumption, a critical issue in WSNs.

For this evaluation, C-2 was configured to use 12-

byte blocks and keys, AES uses 16-bytes blocks and keys, and

Skipjack uses 8-byte blocks and 10-byte keys.

Table II shows the average execution time (in milliseconds)

and energy consumption (in microjoules) for encryption al-

gorithms running on TelosB. To obtain the results presented

in this section, we executed 10 sets of 100 task repetitions,

and then calculated the average, with 99% confidence interval.

Once again, we turned off the radio to isolate the results pre-

sented here, which are relative to the idle energy consumption.



TABLE II
A     ,  99% 

,      TB.

TinyOS Contiki

Task Duration Energy Duration Energy
(ms) (µJ) (ms) (µJ)

C-2
init 67 ± 10 267 ± 31 59.5 ± 0.7 323 ± 2
crypt 175 ± 8 944 ± 27 180.1 ± 0.6 1012 ± 3
decrypt 192 ± 10 1035 ± 26 200.3 ± 0.8 1128 ± 3

AES
init 109 ± 8 526 ± 7 94 ± 1 531 ± 2
crypt 401 ± 10 2144 ± 10 381 ± 1 2080 ± 2
decrypt 476 ± 8 2562 ± 15 470 ± 1 2550 ± 3

Skipjack
init 5 ± 1 24 ± 2 5.7 ± 0.6 20 ± 2
crypt 175 ± 10 942 ± 33 193.2 ± 0.8 1060 ± 2
decrypt 196 ± 8 1046 ± 15 205.4 ± 0.6 1127 ± 3

Notice from Table II that the ratio between execution time

and energy consumption for any given OS is quite stable, as

expected. Regarding the execution time and energy consump-

tion, we observe that all algorithms perform better in TinyOS

than in Contiki, except for AES’s and C’s initialization,

which are faster in Contiki.

The deployment of efficient Message Authentication Codes

(MACs) is also an important issue in sensor networks. A

reasonable strategy in such constrained scenarios is to adopt a

cipher-based MAC algorithm, such as CMAC [33], [34] and

M [18], in order to reduce the memory requirements

for the authentication itself. Using C-2 as underlying

cipher, both our CMAC and M implementations operate

with 12-byte blocks and 12-byte keys, generating 4-byte tags.

Table III shows the average execution time (in milliseconds)

and energy consumption (in microjoules) for these MAC

algorithms running on TelosB. We observe that the MAC

algorithms are faster on TinyOS but consume more energy,

while Contiki takes a bit more time but spends less energy.

TABLE III
A     ,  99% 

, MAC    TB.

TinyOS Contiki

Task Duration Energy Duration Energy
(ms) (µJ) (ms) (µJ)

M
init 168 ± 10 877 ± 25 250 ± 0.0 804 ± 3
getTag 218 ± 13 1142 ± 9 328.1 ± 0.0 1002 ± 7

CMAC
init 139 ± 12 678 ± 22 234.3 ± 0.0 754 ± 12
getTag 132 ± 8 666 ± 20 250.0 ± 0.0 772 ± 8

When both confidentiality and authenticity are necessary,

AEAD (Authenticated Encryption with Associated Data)

schemes are usually deployed, allowing the encryption of part

of the message and the authentication of the encrypted data

together with some plaintext (the “associated data”). Table IV

shows the average execution time (in milliseconds) and energy

consumption (in microjoules) for AEAD algorithms running

on TelosB. Our LS and OCB implementations rely

on C-2 as underlying cipher and are both applied to

12 bytes of data, 8 bytes of associated data, generating a 4-

byte tag by means of a 12-byte key. Those sizes were chosen

to match the architecture model used by TinySec [35] and

MiniSec [36]. The results obtained show that TinyOS is faster

than Contiki, but consumes more energy.

TABLE IV
A     ,  99% 

,  AEAD    TB.

TinyOS Contiki

Task Duration Energy Duration Energy

(ms) (µJ) (ms) (µJ)

OCB
init 240 ± 10 1200 ± 30 340 ± 5 1079 ± 21
crypt 679 ± 18 3794 ± 23 1109.37 ± 0.00 3461 ± 4
decrypt 665 ± 8 3762 ± 35 1101 ± 10 3423 ± 7

LS
init 170 ± 9 901 ± 30 262 ± 5 799 ± 11
crypt 598 ± 18 3445 ± 100 975 ± 6 3012 ± 14
decrypt 585 ± 10 3401 ± 3 975 ± 6 3008 ± 15

C. Communication Tasks

Communication tasks are related to transmission and recep-

tion of data packets, and depend on the communication stack

used (i.e., network and MAC layer protocols).

Contiki implements two communication stacks: the

µIP [25], which is compatible with the TCP/IP stack, and

Rime [26]. Rime stack uses the X-MAC [37] MAC layer,

which is an asynchronous low power, duty-cycled scheme (it

turns the radio on and off periodically, instead of keeping it

always on listening for data). On the other hand, the µIPv6

stack uses the SICSLoWMAC MAC layer protocol, which

simply put the packets into standard 802.15.4 frames, and leads

to higher energy consumption since the radio is always on, as

observed during our experiments.

In TinyOS, the default MAC scheme for the CC2420 is the

standard 802.15.4 CSMA/CA, which basically listens to the

channel to detect if there is any transmission. This implies in

an elevated energy consumption, since the radio will spend

most of the time in idle listening. In order to minimize

consumption, TinyOS provides an interface called Low Power

Listening [38], which can set the radio sleep interval according

to the users’ needs.

In our tests, the sleep interval in TinyOS was set to 500

ms in order to approximate to the Contiki implementation of

X-MAC, thus leading to a fair comparison. Also, transmission

and reception used broadcast packets for both OS.

Table V presents the average execution time (in mil-

liseconds) and energy consumption (in microjoule) for the

transmission of a packet having 12-bytes of payload, both

in Contiki using Rime/X-MAC and in TinyOS using the

TelosB’s LPL interface. Notice that the energy consumption is



relative to the idle energy consumption value. We observe that

TinyOS is more efficient in terms of energy consumption and

execution time both for reception and transmission. Regarding

transmission (resp. reception), TinyOS spent 71.8% (resp.

33.6%) of Contiki’s energy, and took 76.6% (resp. 43.1%)

of Contiki’s time to complete the task.

TABLE V
A      ,  99%
 ,      12   .

Contiki TinyOS

Task Time Energy Time Energy
(ms) (mJ) (ms) (mJ)

TX 12 Bytes 828 ± 76 46 ± 4 634 ± 14 33.5 ± 0.3

RX 12 Bytes 318 ± 114 17 ± 6 137 ± 40 5.9 ± 0.1

D. Discussion

The results presented in this section show the different

behaviors of the same task running on different operating

systems. As shown in Section IV-A, Contiki is faster for any

sensing operation, but leads to a higher energy consumption

when compared to TinyOS. It is important to remember that

when using Contiki, the ADC is by default turned on the

whole time, sampling light measurements on both photo-

diodes, which causes the idle consumption on Contiki to be

higher than in TinyOS. Also, this probably leads to smaller

execution times.

In the case of encryption algorithms, both OS show only

small differences in execution time and energy consumption.

As for the tested MAC algorithms, TinyOS presented a lower

execution time, but consumed more energy for the M

algorithm with a small amount of authenticated data. For the

AEAD algorithms, we also observed that TinyOS presented

a better performance regarding execution time, but presented

higher energy consumption for all algorithms evaluated.

In terms of execution time and energy consumption for

communication tasks (presented in Table V), we notice that

TinyOS is faster and consumes less energy, while Contiki

using the Rime stack with X-MAC spends more time trans-

mitting and receiving, which increases the overall energy

consumption. Furthermore, the design and implementation

decisions made throughout the OS development will impact

the WSN applications in different aspects. When Contiki

developers decided to add X-MAC to the Rime stack, they

likely intended to make the WSN device more energy efficient.

However, this characteristic could impact negatively on an

application with a duty-cycle having different constraints at

the application and MAC layer levels. Thus, the OS character-

istics have significant impact on the overall WSN application

development and performance, and the choice of an OS should

be based on the specific requirements of the WSN application.

Finally, when we consider the single execution of a security

task, the cost introduced is very low compared to the costs of

communication. This is depicted in Figure 2, which summa-

rizes energy consumption results presented in Tables I-V.

V. C  FW

Wireless Sensor Networks (WSNs) are a valuable technol-

ogy to support countless applications in different areas. Given

the WSN nodes resource constrained nature, designing energy-

aware applications and communication protocols is critical.

The operating system running on the WSN node also interferes

with the node overall behavior, and its energy consumption.

In this paper, we presented results obtained from a set of

experiments aiming to measure the execution time and energy

consumption of several different tasks (including sensing,

communication and security algorithms execution) running on

two different operating systems (namely Contiki and TinyOS)

on the same hardware platform (Crossbow TelosB).

Sensing tasks run faster on Contiki, but are more energy

efficient on TinyOS. Regarding processing tasks (i.e., security

algorithms), the results are in general quite similar for both OS.

The communication tasks perform better on TinyOS, probably

due to a more efficient usage of the communication stack.

Finally, the results we obtained showed us that both OS could

be optimized to decrease the energy consumption, indicating

that WSN developers need to be aware of this differences in

behavior to improve the overall performance of their nodes.

As future work, we intend to run measurements on other

hardware platforms (such as MicaZ) to understand how the

same OS behaves on different platforms. Additionally, we

would like to further investigate the behavior of the commu-

nication stack, and how it affects idle consumption and other

tasks being executed.

VI. A

This work was supported by the Research and Development

Center, Ericsson Telecomunicações S.A., Brazil.

R

[1] T. Arampatzis, J. Lygeros, and S. Manesis, “A survey of applications of
wireless sensors and wireless sensor networks,” in Proc. of the 2005

IEEE International Symposium on Intelligent Control - Mediterrean

Conference on Control and Automation, June 2005, pp. 719–724.

[2] A. Alemdar and M. Ibnkahla, “Wireless sensor networks: Applications
and challenges,” 9th International Symposium on Signal Processing and

Its Applications (ISSPA 2007), pp. 1–6, February 2007.

[3] D. Culler, D. Estrin, and M. Srivastava, “Overview of sensor networks,”
Computer Magazine, vol. 37, no. 8, pp. 41–49, 2004.

[4] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” in WSNA ’02: Proc.

of the 1st ACM international workshop on Wireless sensor networks and

applications. New York, NY, USA: ACM, 2002, pp. 88–97.

[5] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong, “A macro-
scope in the redwoods,” in SenSys ’05: Proc. of the 3rd international

conference on Embedded networked sensor systems. New York, NY,
USA: ACM, 2005, pp. 51–63.

[6] Y. Xiao, V. K. Rayi, B. Sun, X. Du, F. Hu, and M. Galloway, “A survey
of key management schemes in wireless sensor networks,” Computer

Communication, vol. 30, no. 11-12, pp. 2314–2341, 2007.

[7] Y. W. Law, J. Doumen, and P. Hartel, “Survey and benchmark of block
ciphers for wireless sensor networks,” ACM Trans. Sen. Netw., vol. 2,
no. 1, pp. 65–93, 2006.

[8] R. Roman, C. Alcaraz, and J. Lopez, “A survey of cryptographic
primitives and implementations for hardware-constrained sensor network
nodes,” Mobile Networks and Applications, vol. 12, no. 4, pp. 231–244,
2007.



Fig. 2. Energy consumption for security tasks for TinyOS and Contiki

[9] M. Passing and F. Dressler, “Practical evaluation of the performance
impact of security mechanisms in sensor networks,” 2006, pp. 623–629.

[10] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller,
and M. Sichitiu, “Analyzing and modeling encryption overhead for sen-
sor network nodes,” in WSNA ’03: Proc. of the 2nd ACM international

conference on Wireless sensor networks and applications. New York,
NY, USA: ACM, 2003, pp. 151–159.

[11] L. B. Oliveira, D. F. Aranha, E. Morais, F. Daguano, J. López,
and R. Dahab, “TinyTate: Computing the Tate Pairing in Resource-
Constrained Sensor Nodes,” in 6th IEEE International Symposium on

Network Computing and Applications (NCA 2007), 2007, pp. 318–323.

[12] L. Oliveira, M. Scott, J. Lopez, and R. Dahab, “TinyPBC: Pairings for
authenticated identity-based non-interactive key distribution in sensor
networks,” June 2008, pp. 173–180.

[13] B. Doyle, S. Bell, A. Smeaton, K. McCusker, and N. O’Connor, “Secu-
rity considerations and key negotiation techniques for power constrained
sensor networks,” The Computer Journal, vol. 49, no. 4, pp. 443–453,
2006.

[14] J. Daemen and V. Rijmen, The Design of Rijndael: AES – The Advanced

Encryption Standard. Heidelberg, Germany: Springer, 2002.

[15] NSA, Skipjack and KEA Algorithm Specifications, v2.0, National Secu-
rity Agency, 1998.

[16] P. Barreto and M. Simplicio, “C, a block cipher for constrained
platforms,” in Anais do 25o Simpósio Brasileiro de Redes de Computa-

dores e Sistemas Distribudos - SBRC’07, vol. 1. SBC, 2007, pp. 61–74.

[17] M. Simplicio, P. Barreto, T. Carvalho, C. Margi, and M. Näslund,
“The C-2 block cipher for constrained platforms: Specification
and benchmarking,” in Proc. of the 1st International Workshop on

Privacy in Location-Based Applications - 13th European Symposium

on Research in Computer Security (ESORICS’2008), vol. 397. CEUR-
WS, 2008. [Online]. Available: http://sunsite.informatik.rwth-aachen.
de/Publications/CEUR-WS/Vol-397/

[18] M. Simplicio, P. Barbuda, P. Barreto, T. Carvalho, and C. M. i, “The
Marvin Message Authentication Code and the LetterSoup Authenticated
Encryption Scheme,” Security and Communication Networks, vol. 2,
no. 2, pp. 165 – 180, March 2009.

[19] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” in Architectural

Support for Programming Languages and Operating Systems, 2000, pp.
93–104.

[20] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in Proc. of the

1st IEEE Workshop on Embedded Networked Sensors (Emnets-I), 2004.

[21] NIST, Special Publication 800-38B Recommendation for Block Cipher

Modes of Operation: the CMAC Mode for Authentication, National
Institute of Standards and Technology, U.S. Department of Commerce,
May 2005, http://csrc.nist.gov/publications/PubsSPs.html.

[22] T. Krovetz and P. Rogaway, “Internet draft: The OCB authenticated-
encryption algorithm,” http://www.cs.ucdavis.edu/~rogaway/papers/
ocb-id.htm, March 2005.

[23] Crossbow, “TelosB Datasheet,” http://www.xbow.com/Products/Product_
pdf_files/Wireless_pdf/TelosB_Datasheet.pdf, 2008.

[24] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesc language: A holistic approach to networked embedded

systems,” in PLDI’03: Proc. of the ACM SIGPLAN 2003 conference

on Programming language design and implementation. New York,
NY, USA: ACM, 2003, pp. 1–11.

[25] A. Dunkels, “Full TCP/IP for 8-bit architectures,” in MobiSys ’03: Proc.

of the 1st international conference on Mobile systems, applications and

services. New York, NY, USA: ACM, 2003, pp. 85–98.
[26] ——, “Rime - A Lightweight Layered Communication Stack for Sensor

Networks,” in Proc. of the European Conference on Wireless Sensor

Networks (EWSN), Poster/Demo session, Delft, The Netherlands, Jan.
2007. [Online]. Available: http://www.sics.se/~adam/dunkels07rime.pdf

[27] Sensirion, “SHT1x Datasheet,” http://www.sensirion.com/en/pdf/
product_information/Datasheet-humidity-sensor-SHT1x.pdf, 2009.

[28] Chipcon, “CC2420 Datasheet,” http://focus.ti.com/lit/ds/symlink/
cc2420.pdf, 2007.

[29] C. B. Margi, V. Petkov, K. Obraczka, and R. Manduchi, “Characteriz-
ing energy consumption in a visual sensor network testbed,” in 2nd

International IEEE/Create-Net Conference on Testbeds and Research

Infrastructures for the Development of Networks and Communities

(TridentCom 2006), 2006.
[30] Agilent, “E363xA Series Programmable DC Power Supplies,” http://cp.

literature.agilent.com/litweb/pdf/5968-9726EN.pdf, 2009.
[31] ——, “Agilent 34401A Multimeter,” http://cp.literature.agilent.com/

litweb/pdf/5968-0162EN.pdf, 2007.
[32] NationalInstruments, “LabView,” http://www.ni.com/labview/, 2009.
[33] T. Iwata and K. Kurosawa, “OMAC: One-key CBC MAC,” in Fast

Software Encryption – FSE’2003, ser. Lecture Notes in Computer
Science, vol. 2887. Springer, 2003, pp. 129–153.

[34] NIST, Special Publication 800-38B – Recommendation for Block Cipher

Modes of Operation: The CMAC Mode for Authentication, National
Institute of Standards and Technology, 2005.

[35] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: a link layer security ar-
chitecture for wireless sensor networks,” in 2nd International Conference
on Embedded Networked Sensor Systems – SenSys’2004. Baltimore,
USA: ACM, 2004, pp. 162–175.

[36] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “Minisec: A secure sensor
network communication architecture,” in IPSN’07: Proc. of the 6th

international conference on Information processing in sensor networks.
New York, NY, USA: ACM, 2007, pp. 479–488.

[37] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-mac: a short
preamble mac protocol for duty-cycled wireless sensor networks,” in
SenSys ’06: Proc. of the 4th international conference on Embedded

networked sensor systems. NY, USA: ACM, 2006, pp. 307–320.
[38] D. Moss, J. Hui, and K. Klues, “Low power listening,” http://www.

tinyos.net/tinyos-2.1.0/doc/html/tep105.html.


