

ISSN 0103-9741

Monografias em Ciência da Computação

n° 11/10

First version of a Prototype for Publishing

Deep Web Data

Antonio L. Furtado Simone D. J. Barbosa

Marco A. Casanova Helena Piccinini

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 11/10 ISSN 0103-9741
Editor: Prof. Carlos José Pereira de Lucena July 2010

First version of a Prototype for Publishing Deep Web Data

Antonio L. Furtado, Simone D. J. Barbosa, Marco A. Casanova, Helena Piccinini

{furtado,simone,casanova}@inf.puc-rio.br
helena.piccinini@gmail.com

Abstract: To make data stored in relational databases accessible to search engines by
applying the W-Ray method, introduced in a previous paper, a prototype called WRay1
was developed. Working on views designed according to the ER (Entity-Relationship)
modelling principles, WRay1 endeavours to express the data items of more general interest
under the form of template-driven natural language sentences. The sentences are registered
on html pages, which are then posted on the Web.

Keywords: deep web, relational databases, views, ER model, SWI-Prolog, ODBC, Oracle,
html pages, Google.

Resumo: Para tornar dados armazenados em bancos de dados relacionais acessíveis a
mecanismos de busca aplicando o método W-Ray, introduzido em um artigo anterior, foi
desenvolvido um protótipo, denominado WRay1. Operando sobre visões projetadas de
acordo com os princípios do modelo ER (Entidades-Relacionamentos), WRay1 se propõe
a expressar os itens de dados de maior interesse sob a forma de frases em linguagem
natural, geradas com o auxílio de moldes. As frases são registradas em páginas html, que
são em seguida expostas na Rede.

Palavras-chave: web profunda, bancos de dados relacionais, visões, modelo ER, SWI-
Prolog, ODBC, Oracle, páginas html, Google.

In charge of publications

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática

Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br

 1

1. Introduction

Unlike the Surface Web of static pages, the Deep Web [1] comprises data stored in
databases, dynamic pages, scripted pages and multimedia data, among other types of
objects. Estimates suggest that the size of the Deep Web greatly exceeds that of the Surface
Web – with nearly 92,000 terabytes of data on the Deep Web versus only 167 terabytes on
the Surface Web, as of 2003. In particular, Deep Web databases are typically under-
represented in search engines due to the technical challenges of locating, accessing, and
indexing the databases. Indeed, since Deep Web data is not available as static Web pages,
traditional search engines cannot discover data stored in the databases through the traversal
of hyperlinks, but rather they have to interact with (potentially) complex query interfaces.
 Two basic approaches to access Deep Web data have been proposed. The first approach,
called surfacing, or Deep Web Crawl [16], tries to automatically fill html forms to query
the databases. Queries are executed offline and the results are translated to static Web
pages, which are then indexed [15]. The second approach, called federated search, or
virtual integration [4, 18], suggests using domain-specific mediators to facilitate access to
the databases. Hybrid strategies, extending the previous ones, have also been proposed [21].
 Despite recent progress, accessing Deep Web data is still a challenge, for two basic
reasons [20]. First, there is the question of scalability. Since the Deep Web is orders of
magnitude larger than the Surface Web [1], it may not be feasible to completely index the
Deep Web. Second, databases typically are forced to rely on interfaces designed for human
users, which complicates the development of software agents to interact with them.
 The paper "W-Ray: A Strategy to Publish Deep Web Geographic Data", which is the
main reference [0] on which the present report is based, proposes a different approach,
called W-Ray by analogy with medical X-Ray technology, to publish conventional (as well
as geographic data, in vector or raster format – but note that these are not treated in the
present report) stored in the Deep Web. The basic idea consists of creating a set of natural
language sentences, with a simple structure, to describe Deep Web data, and publishing the
sentences in static Web pages, which are then indexed as usual. Employing natural
language sentences is convenient for three reasons. First, they lead to Web pages that are
acceptable to Web crawlers that consider words randomly distributed in a page as an
attempt to manipulate page rank. Second, they facilitate the task of more sophisticated
engines that support semantic search based on natural language features [5, 23]. Lastly, the
descriptions thus generated are minimally acceptable to human users. The Web pages
should be generated following the W3C guidelines [3] and the recommendations published
by Google to optimize Web site indexing [9]. The main reference paper [0] illustrates the
use of templates over a relational view of the SIDRA database, which the Brazilian Institute
of Geography and Statistics (IBGE) publishes on the Web with the help of html forms. It
should be observed that SIDRA is not indexed by any conventional search engine.
 As an complement to the main reference paper, the present report provides an overview
of the first version of a prototype, called WRay1, which purports to partially implement
the W-Ray method. Similarly using a minimal "Geography of Northern Region" example,
the prototype's functioning is presented along three stages, covering the selection of the
data to be published (section 2), the generation of template-driven natural language
sentences (section 3) and the preparation of html pages to be posted on the Web (section 4).
Section 5 contains conclusions and topics needing further work. The additional references,
included here for convenience, were copied from the main reference paper.

 2

2. Selecting the data to be published

Given a relational database, composed of one or more tables, the first step is to choose the
items to be published. Apart from the obvious confidentiality restrictions, one must find out
what may or may not be of interest to the prospective users.
 A sound practice that, unfortunately, is not always adopted when creating a database is
to start with a conceptual design of the information system involved. For this purpose, the
Entity-Relationship (ER) model offers suitable guidelines, since it allows to specify real-
world objects in terms of meaningful schemas, which, at the next design stage, can be
mapped into relational tables in a straightforward way. For relational databases that have
been designed directly, it is possible to derive the missing conceptual ER schema through a
reverse-engineering process.
 Inspecting the conceptual schema, we must decide which entities may be of interest and,
for such entities, which properties (in WRay1 limited to attributes and binary

relationships) should be retained. For our example, the chosen subset of the conceptual
schema is displayed below, expressed in the following clausal format:

entity(<entity class>,<identifying attribute>).
attribute(<entity class>,<attribute>).
relationship(<relationship class>,[<entity class>,<entity class>).

conceptual schema:

entity(political_division,pdname).

entity(populated_place,popname).

entity(waterway,wname).

attribute(political_division,population).

attribute(political_division,abbreviated_name).

attribute(political_division,area).

attribute(populated_place,administration_level).

attribute(populated_place,local_area).

attribute(populated_place,local_population).

attribute(waterway,flow).

attribute(waterway,navigability).

relationship(located_in,[populated_place,political_division]).

relationship(crosses,[waterway,political_division]).

 From the conceptual schema, one then derives relational tables, which can be regarded
as views of the original database. To each entity, there corresponds a table, whose columns
correspond in turn to the respective attributes. Also, tables are created for the binary
relationships, whose columns, called after the participating entity classes, will store the
values of their attributes. For the present version we did not take advantage of the reduced
representation commonly employed for 1-n relationships. A more important aspect, still
currently left aside, is the choice of some standard general or domain-oriented vocabulary,
to rename the various items, so as to guide the search engines to a better performance as
indicated in the Introduction – we shall refer to that in the Conclusions.

 3

 Our example views are shown below, as they were created using the Oracle DBMS and
populated with just a few rows, minimally enough to conduct the experiments.

Oracle tables:

POLITICAL_DIVISION

POPULATED_PLACE

WATERWAY

LOCATED_IN

CROSSES

 The SWI-Prolog program empowering the WRay1 prototype accesses these tables via
an Open Database Connectivity (ODBC) interface. The execution of the command line

?- create_queries.

compiles a select clause for each entity, attribute and relationship present in the
conceptual schema, as listed in the sequel:

Compiled selected clauses:

flow(A, B) :-

 odbc_connect('XE', _, [user(prolog), password(prolog), alias(prolog), open(once)]), !,

 odbc_query(prolog, 'select wname,flow from waterway', C),

 flow(A, B)=..[_|D],

 C=..[row|D].

navigability(A, B) :-

 odbc_connect('XE', _, [user(prolog), password(prolog), alias(prolog), open(once)]), !,

 odbc_query(prolog, 'select wname,navigability from waterway', C),

 navigability(A, B)=..[_|D],

 C=..[row|D].

located_in(A, B) :-

 4

 odbc_connect('XE', _, [user(prolog), password(prolog), alias(prolog), open(once)]), !,

 odbc_query(prolog, 'select populated_place,political_division from located_in', C),

 located_in(A, B)=..[_|D],

 C=..[row|D].

crosses(A, B) :-

 odbc_connect('XE', _, [user(prolog), password(prolog), alias(prolog), open(once)]), !,

 odbc_query(prolog, 'select waterway,political_division from crosses', C),

 crosses(A, B)=..[_|D],

 C=..[row|D].

local_area(A, B) :-

 odbc_connect('XE', _, [user(prolog), password(prolog), alias(prolog), open(once)]), !,

 odbc_query(prolog, 'select popname,local_area from populated_place', C),

 local_area(A, B)=..[_|D],

 C=..[row|D].

local_population(A, B) :-

 odbc_connect('XE', _, [user(prolog), password(prolog), alias(prolog), open(once)]), !,

 odbc_query(prolog, 'select popname,local_population from populated_place', C),

 local_population(A, B)=..[_|D],

 C=..[row|D].

flow(A, B) :-

 odbc_connect('XE', _, [user(prolog), password(prolog), alias(prolog), open(once)]), !,

 odbc_query(prolog, 'select wname,flow from waterway', C),

 flow(A, B)=..[_|D],

 C=..[row|D].

navigability(A, B) :-

 odbc_connect('XE', _, [user(prolog), password(prolog), alias(prolog), open(once)]), !,

 odbc_query(prolog, 'select wname,navigability from waterway', C),

 navigability(A, B)=..[_|D],

 C=..[row|D].

located_in(A, B) :-

 odbc_connect('XE', _, [user(prolog), password(prolog), alias(prolog), open(once)]), !,

 odbc_query(prolog, 'select populated_place,political_division from located_in', C),

 located_in(A, B)=..[_|D],

 C=..[row|D].

crosses(A, B) :-

 odbc_connect('XE', _, [user(prolog), password(prolog), alias(prolog), open(once)]), !,

 odbc_query(prolog, 'select waterway,political_division from crosses', C),

 crosses(A, B)=..[_|D],

 C=..[row|D].

 By performing selections with these clauses across the ODBC interface, the Prolog
program will retrieve all rows in the Oracle tables, when the command line

?- forall(fact(F), (F, write(F), nl)).

is executed, displaying all the stored data converted into clausal format:

Facts in clause notation:

political_division(State of Amazonas)

political_division(State of Roraima)

political_division(State of Pará)

populated_place(City of Boavista)

waterway(Amazon River)

population(State of Amazonas, $null$)

population(State of Roraima, 15359608)

population(State of Pará, $null$)

abbreviated_name(State of Amazonas, AM)

abbreviated_name(State of Roraima, RO)

abbreviated_name(State of Pará, PA)

area(State of Amazonas, $null$)

area(State of Roraima, 22377870)

area(State of Pará, $null$)

 5

administration_level(City of Boavista, capital city)

local_area(City of Boavista, 5687)

local_population(City of Boavista, 266901)

flow(Amazon River, permanent)

navigability(Amazon River, navigable)

located_in(City of Boavista, State of Roraima)

crosses(Amazon River, State of Pará)

crosses(Amazon River, State of Amazonas)

3. Generating template-driven natural language sentences

The same facts above are rendered into template-driven natural language sentences if the
command line is rewritten as:

?- forall(fact(F), show(F)).

in which case the program generates and applies on the fly the appropriate default patterns,
all conforming to one of the standard formats below:

There is a(an) <entity class> with <identifying attribute> <attribute value>.
The <attribute> of <identifying attribute value> is <attribute value>.
<identifying attribute value> is related to <identifying attribute value> by <relationship class>.

 The generated patterns are internally represented as lists whose items are either constant
character strings or variables, to be instantiated with the clause parameters while each
clause is matched against the applicable pattern. In our example, the patterns will be:

Patterns in list format:

political_division(A)- ['There is ','a ',political_division,' with ',pdname,' ',A,'.']

populated_place(A)- ['There is ','a ',populated_place,' with ',popname,' ',A,'.']

waterway(A)- ['There is ','a ',waterway,' with ',wname,' ',A,'.']

population(A,B)- ['The ',population,' of ',A,' is ',B,'.']

abbreviated_name(A,B)- ['The ',abbreviated_name,' of ',A,' is ',B,'.']

area(A, B)- ['The ',area,' of ',A,' is ',B,'.']

administration_level(A,B)- ['The ',administration_level,' of ',A,' is ',B,'.']

local_area(A, B)- ['The ',local_area,' of ',A,' is ',B,'.']

local_population(A,B)- ['The ',local_population,' of ',A,' is ',B,'.']

flow(A, B)- ['The ',flow,' of ',A,' is ',B,'.']

navigability(A,B)- ['The ',navigability,' of ',A,' is ',B,'.']

located_in(A,B)- [A,' is related to ',B,' by ',located_in,'.']

crosses(A,B)- [A,' is related to ',B,' by ',crosses,'.']

and their matching to the clauses by the show predicate, which concatenates the list items
after the variables are instantiated so as to compose the sentences, yields the result below:

Facts is template-driven natural language sentences:

 There is a political division with pdname State of Amazonas.

 There is a political division with pdname State of Roraima.

 There is a political division with pdname State of Pará.

 There is a populated place with popname City of Boavista.

 There is a waterway with wname Amazon River.

 The population of State of Amazonas is undefined.

 6

 The population of State of Roraima is 15359608.

 The population of State of Pará is undefined.

 The abbreviated name of State of Amazonas is AM.

 The abbreviated name of State of Roraima is RO.

 The abbreviated name of State of Pará is PA.

 The area of State of Amazonas is undefined.

 The area of State of Roraima is 22377870.

 The area of State of Pará is undefined.

 The administration level of City of Boavista is capital city.

 The local area of City of Boavista is 5687.

 The local population of City of Boavista is 266901.

 The flow of Amazon River is permanent.

 The navigability of Amazon River is navigable.

 City of Boavista is related to State of Roraima by located in.

 Amazon River is related to State of Pará by crosses.

 Amazon River is related to State of Amazonas by crosses.

 If, on the one hand, it is convenient to conform to a uniform standard to ease the job of
the search engines, on the other hand a user may find desirable to express certain facts in a
more idiomatic and fluent style. To cater to this preference, WRay1 supplies a dialogue-
based feature, wherein the user is shown the default sentence format and asked to indicate
the new desired format. The resulting user-templates will be represented as lists, exactly as
the default ones, but, once again, users need not bother with internal representation details.
 As an example, suppose a user wishes to combine four sorts of facts:

political_division(Pd)
crosses(Wa,Pd)
flow(Wa,Fl)
navigability(Wa,Na)

 The command line

?- show((political_division(P), crosses(R, P), flow(R, S),

 navigability(R, V))).

would yield two results, each consisting of four sentences:

There is a political division with pdname State of Amazonas. Amazon River

is related to State of Amazonas by crosses. The flow of Amazon River is

permanent. The navigability of Amazon River is navigable.

There is a political division with pdname State of Pará. Amazon River is

related to State of Pará by crosses. The flow of Amazon River is

permanent. The navigability of Amazon River is navigable.

 Now suppose the user finds more palatable to express that information in single
sentences, removing the obvious redundancies. A dialogue to achieve this purpose ensues,
dealing separately with each of the four facts. The user's replies appear in boldface.

Dialogue to create user-defined template:

?- new_template(political_division).

 7

Default template:

There is a political division with pdname id-political division

Please, type sentence with id-political_division

my choice: The State of id-political_division

?- new_template(crosses).

Default template:

id-waterway is related to id-political division by crosses

Please, type sentence with both id-waterway and id-political division

my choice: is crossed by the id-waterway,

?- new_template(flow).

Default template:

The flow of id-waterway is val-flow

Please, type sentence with both id-waterway and val-flow

my choice: which is val-flow

?- new_template(navigability).

Default template:

The navigability of id-waterway is val-navigability

Please, type sentence with both id-waterway and val-navigability

my choice: and val-navigability.

 As a consequence, four user patterns are produced, with the internal representation
below:

utemplate(political_division(A), ['The State of ', A])

utemplate(crosses(A, _), ['is crossed by the ', A, ','])

utemplate(flow(_, A), ['which is ', A])

utemplate(navigability(_, A), ['and ', A, '.'])

after which the same command line

?- show((political_division(P), crosses(R, P), flow(R, S),

 navigability(R, V))).

yields:

The State of Amazonas is crossed by the Amazon River, which is permanent

and navigable.

The State of Pará is crossed by the Amazon River, which is permanent and

navigable.

 Until now we have been assuming screen-output. The Prolog program can instead be
directed to produce text output on a txt file. Just as the file is being opened for output, a list
of keywords is recorded, enumerating all items is the conceptual schema, optionally
preceded by words indicated by the user.

 8

 In an attempt to provide an example, we asked for the facts concerning the existence of
political divisions, populated places and waterways to be recorded using the default
patterns. After this, we caused the creation of the user templates mentioned before (which
can be turned off or reactivated, by remove_uts and restore_uts), and then performed
the command line (with show replaced by w_show, as required to redirect the output). See
below the resulting contents of the file.

Contents of the txt file:

4. Posting html pages on the Web

Arguably html is a more adequate file format than txt for publishing on the Web.
Accordingly, we proceeded to manually reformat the txt file above to compose what we
called the Details page. Besides introducing various html tags, we added, as a heading:

- a title: Geography of Northern Region
- the acronym of our university, to certify the provenance of the document
- the occasion of the last update

and we kept some of the keywords of the txt file. Finally we included a table of contents,
with reference tags linking to anchors placed at the beginning of each of the four sets of
sentences, thus separating them into distinct sections, called:

- Political divisions
- Populated places
- Waterways
- Fluvial access

 The Details page is found at: http://www-di.inf.puc-rio.br/~furtado/geo.htm

 9

The html Details page posted on the Web - created from the txt file:

 In addition to this Details page, containing all the available detailed information, we
provided what we called the Top page, also in html format, with the same heading and
keywords. From this page, two kinds of queries can be posed. Both kinds are associated
with the section titles, each one exemplified with the first contained sentence:

• direct link: to access the Details page at the beginning of the section, by clicking on
the section's title

• free query from template: to submit to Google a query template, possibly after
modifying the input boxes in the example sentence, by clicking on the respective
radio button and then on the search button placed above

The Top page is found at: http://www-di.inf.puc-rio.br/~furtado/geo_search.htm

 10

The Top html page:

 The first option is intended, of course, to link directly to the Details page. If one must
examine all facts in a section, this is the appropriate choice. The second option, however,
may be preferable if one wishes to know about a single specific fact. For instance, suppose
the user wants to learn whether 'Roraima' is a political division, and if so, also wants to
learn whether it is now called a 'State' (it used to be a 'Territory'). The user would then:
replace the contents of the input box of the first query template by '* Roraima', click on the
radio button, observe that the Google search box now reads

"There is a political division with pdname * Roraima"

and, by clicking on the search button, be led to a Google answer page, where precisely the
reply that the user was looking for:

There is a political division with pdname State of Roraima.

appears in a selected snippet, conveniently highlighted in boldface as shown in the
following printsccreen – with the most desirable consequence that there is no need to
access and go through the Details page.

 11

Answer page displayed by Google:

 In fairness, however, we must alert the reader that hitting upon a snippet with the desired
answer is subject to circumstances related to the Google processes which we still ignore1.
To give a negative example, the query formulated by altering the fourth template to:

"The State of Pará is crossed by the * River, which is * and *"

successfully links to the Details page but does not show the answer in the snippet. On the
positive side, independently of whether or not the answer is captured in this convenient
form, an additional bonus of this option is that, since the query is handled by Google,
several other relevant pages from a variety of sites may be brought to the user's attention.
 On the other hand, we also experimented with direct searches via Google, using the title
("Geography of Northern Region") or different lists of the keywords contained in the html
pages. More often than not, either our Top or Details page, sometimes even both pages,
were listed among the results – in this case again the rationale governing the search
engine's behaviour is still not clear to us.

1 see for instance http://googlewebmastercentral.blogspot.com/2009/05/introducing-rich-snippets.html

 12

5. Conclusions

The experiments conducted with the current version of the WRay1 prototype suggest that
our strategy to publish deep Web data is effective. Much work must still be done with
respect to a number of topics, such as:

• expressing all entity, attribute and relationship names, and consequently the names
of the relational views and of their columns, according to a standard general or
domain-oriented vocabulary (e.g. Dublin Core2)

• introducing criteria to choose keywords in order to maximize both their relevance to
users performing queries and the chance of being indexed by search engines

• improving the overall structure of the html tables, particularly to consider the
partitioning of the Details page into a set or even a multi-level hierarchy of pages

• enriching the Details page (or pages) with links to additional multimedia
information on certain items, including maps, statistics, images, videos, Wikipedia
pages, etc.

• investigating tactics to elicit better answers from Google, and doing comparisons
with other search engines

• scaling-up the experiments to real practical applications, so as to handle large
repositories of data kept by official agencies and/or well-reputed companies

• further automating the W-Ray method, noting that only the tasks described at
section 3 are undertaken by the current version of the Prolog program

References

Main reference

[0] PICINNINI, H.; LEMOS, M.; CASANOVA, M. A. and FURTADO, A. L. 2010. W-Ray: A Strategy to Publish
Deep Web Geographic Data. In Proc. 4th International Workshop on Semantic and Conceptual Issues in GIS

(SeCoGIS 2010), Vancouver, Canada - to appear.
Other references (taken from the main reference paper)

[1] BERGMAN, M. K. 2001. The Deep Web: Surfacing Hidden Value. J. Electr. Pub. 7(1).
[2] BIZER, C. and CYGANIAK, R., 2006. D2R Server – Publishing Relational Databases on the Web as SPARQL

Endpoints. In Proc. 15th Int’l. WWW Conf., Edinburgh, Scotland.
[3] CALDWELL, B.; COOPER, M.; REID, L.G. and VANDERHEIDEN, G. 2008. Web Content Accessibility

Guidelines (WCAG) 2.0. In W3C Recommendation.
[4] CALLAN J. 2000. Distributed information retrieval. In Advances in Information Retrieval, Eds. Springer, US, 127-

150.
[5] COSTA L. 2005. Esfinge - Resposta a perguntas usando a Rede. In Proc. Conf. Ibero-Americana IADIS

WWW/Internet, Lisboa, Portugal.
[6] ERLING, O. and MIKHAILOV, I. 2007. RDF support in the virtuoso DBMS. In Proc. 1st Conference on Social

Semantic Web, Leipzig, Germany, Vol. 113 of LNI, pp. 59–68.
[7] FLIEDL G.; KOP C. and VÖHRINGER J. 2010. Guideline based evaluation and verbalization of OWL class and

property labels. Data & Knowledge Eng. 69(4), pp. 331-342.
[8] FUCHS N. E.; KALJURAND K. and KUHN T. 2008. Attempto Controlled English for Knowledge Representation.

In Reasoning Web 2008, LNCS 5224, pp. 104-124.
[9] GOOGLE. 2008. In Google's Search Engine Optimization Starter Guide, Version 1.1.
[10] Alexandria Digital Library, 2004. Guide to the ADL Gazetteer Content Standard, v. 3.2
[11] HOLLINK, L.; SCHREIBER, G.; WIELEMAKER, J. and WIELINGA, B. 2003. Semantic Annotation of Image

Collections. In Proc. Knowledge Markup and Semantic Annotation Workshop, Sanibel, Florida, USA.
[12] ISO 19115:2003, Geographic Information – Metadata.

2 http://www.dublincore.org/

 13

[13] KALYANPUR A.; HALASCHEK-WIENER C.; KOLOVSKI V. and HENDLER J. 2005. Effective NL
Paraphrasing of Ontologies on the Semantic Web. In Workshop on End-User Semantic Web Interaction, 4th Int.

Semantic Web conference, Galway, Ireland.
[14] LEME L. A. P. P.; BRAUNER D. F.; CASANOVA M. A. and BREITMAN K. 2007. A Software Architecture for

Automated Geographic Metadata Annotation Generation. In Proc. XXII Simpósio Brasileiro De Banco De Dados,

SBBD, João Pessoa, Brazil.
[15] MADHAVAN J.; AFANASIEV L.; ANTOVA L. and HALEVY A. 2009. Harnessing the Deep Web: Present and

Future. In Proc. 4th Biennial Conf. on Innovative Data Systems Research (CIDR), Asilomar, California, USA.
[16] MADHAVAN, J.; KO, D.; KOT, L.; GANAPATHY, V.; RASMUSSEN, A. and HALEVY, A. 2008. Google’s

Deep-Web Crawl. In Proc. VLDB 1(2), pp. 1241–1252.
[17] MapServer. http://mapserver.org/about.html#about
[18] MENG W.; YU C.T. and LIU K.L. 2002. Building efficient and effective metasearch engines. ACM Computing.

Survey, v. 34, n.1, pp. 48-89.
[19] PRANINSKAS, J. 1975. Rapid review of English grammar. Prentice-Hall, NJ, USA.
[20] RAGHAVAN S. and GARCIA-MOLINA H. 2001. Crawling the HiddenWeb. In Proc. VLDB, pp. 129-138.
[21] RAJARAMAN A. 2009. Kosmix: HighPerformance Topic Exploration using the Deep Web. In Proc. VLDB, Lyon,

France.
[22] SORRENTINO S.; BERGAMASCHI S.; GAWINECKI M. and PO L. 2009. Schema Normalization for Improving

Schema Matching. In Proceedings of the 28th International Conference on Conceptual Modeling- ER, Gramado,
Brazil, LNCS 5829, pp. 280-293.

[23] ZHENG, Z. 2002. AnswerBus question answering system. In Proc. 2nd International Conference on Human

Language, San Diego, California, pp. 399–404.

