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ABSTRACT
Daily volume is an important feature when it comes to fi-
nancial market structure. Effective daily volume forecast-
ing can help areas such as portfolio management and algo-
rithm trading. Intraday updates of daily volume forecasts
can explore high frequency data to provide more accurate
forecasts. Previous work on daily volume forecasting usu-
ally use Bayesian methods. In our work, we approach the
problem of daily volume forecasting using the intraday in-
formation. Forecasting is accomplished by the use of two
machine learning predictors: Support Vector Regression
(SVR) and Partial Least Squares (PLS). We empirically
test our method using the top nine high liquidity Bovespa
traded stocks. Our metrics are the percentage error and the
relative error reduction against a naive strategy. Our results
show that SVR and PLS provide accurate forecasts. More-
over, the forecasting accuracy improves throughout the day
as more intraday information is available.

KEYWORDS
Finance, Volume Forecasting, Machine Learning, PLS,
SVR.

1 Introduction

Investors who want to minimize their execution order mar-
ket impact have extensively investigated the execution pro-
cess and its consequences in exchanging amounts of as-
sets. With the rising of the algorithm trading area, a lot
of institutional investors are using computer based algo-
rithms and pattern recognition techniques. It is quite rare
to find human intervention in order execution. Nowadays,
the total amount of orders executed by computer-based
traders is large and increasing. According to cf. Chordia
et al. (2008), algorithm trading has been reducing the av-
erage amount of trades in the market and institutional in-
vestors are forced to split their orders for better execution
prices. One strategy is the VolumeWeighted Average Price
(VWAP) strategy. Its intention is to splits an specific num-
ber of shares into smaller number of orders during the day,

executing them at different prices. Such splitting proce-
dure aims at operating close to the VWAP price. One of
the interesting aspects of this strategy is that accurate vol-
ume forecasting can lead to accurate VWAP execution.

Portfolio management and asset allocation require ac-
quisition or liquidation of positions, placing large amounts
of orders that could change the price of an asset. This
change is strictly associated with the transaction risk and
can result in lower profits or higher losses. There is no
simple solution for this problem and to minimize this, the
investor can take into account: asset volume, financial mar-
ket rules, volatility and asset correlations for example.

Besides the importance of volume forecasting to al-
gorithm trading and portfolio management, few works
about volume can be found in the finance literature.
In [Biakowski et al., 2005] and [Bialkowski et al., 2006] a
new methodology is proposed. It consists of decompos-
ing volume for intraday volume forecasting. Their work
used ARIMA and SETAR models, which allowed signif-
icant reduction in vwap orders risk. Their data consisted
in forty stocks of the CAC40 index. In [Lean et al., 2008]
a new kernel-based ensemble learning approach is pro-
posed. They use econometric models and artificial in-
telligence so as to predict China foreign trade volume.
In [Lux and Kaizoji, 2007] the predictability of Japanese
daily volume stocks and volatility are investigated. They
compare ARFIMA and FIGARCH long-memorymodels to
GARCH and ARIMA short-memory ones in order to pre-
dict the volume of 100 days ahead.

Our main contribuition is a dynamic volume model
that uses high-frequency machine learning predictors for
daily volume forecasting. In our work, we have updated our
model aiming at reducing the daily forecasting error during
the day. The updating mechanism model works using the
already known intraday volume during the day. In order
to forecast the volume during the day, we use a Support
Vector Regression (SVR) and Partial Least Squares (PLS).

For the experiments we use the Bovespa data set. This
data set contains 15−min intraday volume of 9 stocks in
which three of them consist of high liquidity stocks and the



remaining are low liquidity stocks. Table 1 shows the av-
erage percentage error reduction of our proposed method
against the naive predictor, with a intraday volume model.
The collumns of table 1, represent the performance gain
in an interval of 15min. The collumns represent the aver-
age performance gains for the beginning, middle and final
of the market day. For all these three periods, we use the
prior intraday information of the model that uses intraday
information. In table 1, our proposed method outperforms
the traditional one, with and without prior intraday infor-
mation during the day. These results lead us to conclude
that the use of machine learning techniques have improved
a volume predictor performance since the beginning of the
day.

Stock intervals 1-9 intervals 10-18 intervals 19-27
PETR3 0, 28 0, 36 0, 51
PETR4 0, 22 0, 38 0, 46
VALE5 0, 24 0, 37 0, 45
CSNA3 0, 55 0, 44 0, 45
USIM5 0, 19 0, 20 0, 42
BBDC4 0, 27 0, 41 0, 44
ITSA4 0, 34 0, 34 0, 52
ITAU4 0, 26 0, 30 0, 44
GOAU4 0, 23 0, 26 0, 42

Table 1. Average relative error reduction against a naive
strategy

Our results are useful for investors who want to
choose the convenient time during the day to execute orders
according to a threshold error. By using a VWAP strategy,
investors are able to minimize the market impact of their
order execution. Moreover, our model can help other intra-
day and interday forecasting models such as price, volatil-
ity and intraday volume.

This work is organized in the following way: in sec-
tion 2, we present the intraday and interday volume dynam-
ics and propose our dynamic volume model; in section 3,
we describe the PLS and SVR machine learning predictors;
in section 4, we show our empirical methodology used in
the experiments; in section 5, we compare our results with
a naive strategy; and, in section 6, our conclusions and fu-
ture works are presented.

2 Modeling Volume Dynamics

Despite this work deals with daily volume forecasting, we
use an intraday volume information to support daily pre-
dictions. Taking into account this intraday information, we
now investigate the peculiarities of intraday behaviour.

It is common knowledge that seasonal fluctua-
tions occurs on intraday volume. In [Biais et al., 1995]
they show that exist an U -shape seasonal pattern. To
circumvent this problem [Dufour and Engle, 2000]
and [Gouriroux and Fol, 1998] worked on market time
scale instead of calendar time scale. Another ap-

proach, proposed by [Engle and Russel, 1998] and
[Easley and OHara, 1987], uses a volume correc-
tion on a stock-by-stock time varying average. In
[McCulloch, 2004] the time varying and an average
volume across stocks are used. We can see in our data set,
in figure 1, an example of the U−Shape pattern.

Figure 1. VALE5 U-shape pattern.

Taking into account the seasonality problem and the
U−Shape pattern of the intraday volume information, we
construct specialized models for each of the market day
interval. Suppose we have a data set with a market day
divided in n intervals, then we will have n seasonal mod-
els for predicting the daily volume of the day. Also, each
seasonal model has two types of features: interday and in-
traday. The interday features corresponds to the past daily
volumes and the intraday features corresponds to the past
intervals volumes during the day.

3 Algorithms for Daily Volume Forecasting

3.1 Naive Strategy

As a baseline, we propose a naive strategy that uses the in-
traday volume information. This strategy simply sums the
n prior volume intervals of the current day interval, where
n is the number of total intervals of a day. As an example,
in the beginning of a day, the strategy sums all intraday
volume intervals of the previous day. In the end of the day,
the strategy uses all the intraday information of that day.
The idea behind this strategy is that the previous volume of
the day is a good estimative to the volume of the next day.
Moreover, this strategy reduces the volume estimative error
during the day.



3.2 Partial Least Squares (PLS)

Introduced by [Wold et al., 1983] Partial Least Squares is
an useful alternative to the well-know least squares method
for linear regression. PLS was initially applied to ana-
lytical chemistry and is a very popular method in indus-
tries for spectroscopy in chemometrics and for quantitative
structure activity relationships in drug design. Recently,
PLS has been used in marketing, image processing and fi-
nances. Some of the advantages of using PLS are: good
performance where the number of features are greater than
the number of observations, applicable to features that are
highly correlated, can be used for dimensionality reduction
and prediction, easy understanding of the implicit model
and fast processing.

In our work we use our PLS based in the work of
[Renteria, 2003]. Suppose we have a mean centered data
set [XY ] whereX are the independent variables and Y the
dependent variables. PLS extracts a latent structure using
orthogonal factors as linear combinations of features. In-
stead of working in the features space

XXT = Cov(X, X) = V ar(X) (1)

like Principal Component Analysis (PCA), PLS adds
dependent variables to work in

XY T Y T X = Cov(X, Y ) (2)

space. The key idea is to find a feature space that
better describes both dependent and independent variables
in a way that can be used for prediction of the dependent
variables. The overall PLS process can be described in the
following way:

X1 ← X ; Y1 ← Y ;
for i=1 to k do

wi ← XT
i Y

wi ← wi/(Y T XXT Y )1/2 //wi normalization
ti ← Xiwi

//Computing the coefficients
bi ← Y T

i ti/tTi ti
pi ← XT

i ti/tTi ti
//Residual Processing
Xi+1 ← Xi − tipT

i

Yi+1 ← Yi − biti
end for

Once we have learned the PLS model we can fit to a
new data set X

′ for predicting the Y
′ responses. We can

do this by using w, b, p learned from the model as in the
following way:

3.3 Support Vector Regression (SVR)

Support VectorMachine was first introduced byVapnik and
colleagues at AT&T research lab at 90 decade within the

X
′

1 ← X
′
; Y

′ ← 0;
for i=1 to h do
//Residual Prediction
t
′

i ← X
′

iwi

Y
′ ← Y

′
+ t

′

ib
T
i

//Residual Processing
X

′

i+1 ← X
′

i + t
′

ip
T
i

end for

statistical learning theory and the structural risk minimiza-
tion. Their theory was proven to be very successfully on
many applications of classification and function estimation.
The SVM learning consists in the use of a kernel repre-
sentation of the data and then formulating the problem as
a convex optimization problem. Usually the convex opti-
mization problem can be solved using a quadratic program-
ming technique, for which the dual problem is solved. The
main advantages of using SVM are: convexity of the ob-
jective function, high generalization and good performance
for high dimension space of features. We must emphasize
that solving a convex optimization problem implies the op-
timization of a quadratic function that has one local mini-
mum.

Suppose that we have a traning data set consisting of
{(x1, y1), ..., (xn, yn)} ⊂ χ × %, where X are the input
patterns in a higher dimension of (χ = %d). The aim of
SVR [Boser et al., 1992] is to find a f(x) that has at most
ε−deviation to the target yi. The error solutions that are
less than e deviations are not penalized. For example, if
we are predicting a financial return function, we can es-
tablish a threshold of ε−loss of money. Now, suppose we
have a linear function f(x) = 〈w, x〉 + b, with w ∈ χ and
b ∈ R where 〈., .〉 denotes the dot product in χ. For ap-
proximating f(x) with an ε−precision, we must formulate
our problem as:

Minimize 1
2
‖ w ‖2 (3)

Subject to
{

yi − 〈w, xi〉 − b ≤ ε,
〈w, xi〉 + b − yi ≤ ε.

this formulation is good but, however, it does not al-
low some errors that can be irrelevant to the problem. To
solve this problem , [Bennett and Mangasarian, 1992] pro-
pose the term Soft Margin that uses slack variables ξi, ξ∗i .
Them the formulation can be denoted as:

Minimize 1
2
‖ w ‖2 + C

l∑

i=1

(ξi + ξ∗i ) (4)

Subject to






yi − 〈w, x〉 − b ≤ ε + ξi,
〈w, xi〉 + b − yi ≤ ε + ξ∗i ,
ξ, ξ∗i ≥ 0

where C > 0 is the regularization constant. This
problem can be solved more easily considering a dual



problem utilizing Lagrange Multipliers as described in
[Fletcher, 1987].

Maximize






− 1
2

∑l
i,j=1 (αi − α∗

i )(αj − α∗
j )K(xi, xj)

−ε
∑l

i=1 (αi + α∗
i ) +

∑l
i=1 yi(αi − α∗

i )

Subject to
∑l

i=1 (αi − α∗
i ) = 0 and αi,α∗

i ∈ [0, C]

In this dual formulation, we can see the use of ker-
nel mapping proposed by [Boser et al., 1992] to solve non-
linear problems, where is k(x, x′) = 〈φ(x),φ(x′)〉 rather
than computing φ(x) explicitly.

4 Empirical Analysis

4.1 Data Set Preparation

Our data set contains ten stocks of Bovespa which
three of them consists in high liquidity stocks (PETR3,
PETR4, VALE5) and the remaining are low liquidity stocks
(USIM5, GOAU5, ITSA4, ITAU4, BBDC4, CSNA3). We
divide a day in 28 intervals of 15 minutes and use a total
of of 460 days corresponding to the dates March 2006 up
to January 2008. For parameter selection, we work in the
ranges March 2006 up to August 2007 and with the test-
ing days in the range August 2007 to January 2008. For
working with PLS algorithm, we preprocess the data set
according to the z−score standardization

zi = (xi − µi)/σi (5)

where xi represents a i-vector of a data set X, Y , µi is the
mean of xi and σi is the standard deviation. For SVR, we
use the min-max normalization

ni =
(maxi − mini)(xi − mini)
(cmax − cmin) + cmin

(6)

where the values will be in the range [cmin = −1,
cmax = 1], maxi is the maximum value of xi, and mini

is the minimun value of xi.

4.2 The Sliding Window Validation Method (SLW)

The key concept behind the sliding window validation is
that it can convert a sequential supervised learning prob-
lem to a classical supervised learning problem. Suppose
we have a data set (xi, yi)

N
i=1 of N samples where each

sample is a duple (xi, yi). We can denote xi as a depen-
dent variable of yi. In our time series prediction problem,
yi corresponds to an element to be predicted in time t and
xi can be a feature in time t − 1 or an independent vari-
able yt−1. The SLW method maps each output yi into
an input window of features w. This input window con-
tains a set of the w-last dependent variables disposed as

(xi,t−w , xi,t−w−1, ..., xi,t). With this new sequential data
set, we can apply our classical supervised learning algo-
rithm.

Once we have the data set prepared, we must guarran-
tee that all the data set samples are in increasing time order.
This is required to maintain a coherence with the time se-
ries problem and to exclude future observations from pre-
dicting past observations. After this process is done, we use
a limited horizon window of training samples that shifts by
k−samples per training iteration.

4.3 Error Metrics

For evaluation of our predictors we use the average of the
percentage errors

100
N

∑
(
|Yi − Y p

i |
Y

)
N

i=1
(7)

where Yi is the true response, Y p
i is the estimated value

and N is the number of samples. Supposing we have
k−intervals in the market day and k−specialized models,
the average percentage error is calculated separately for
each of these k−models.

4.4 Parameter Selection

For the parameter selection, we use a grid search heuristic.
This heuristic tries values of each parameter in a search
range using geometric steps. In tables 2 and 3, respec-
tively, we can see the best parameters for PLS and SVR
algorithms using the grid search with a sliding window val-
idation method. The parameter selection data set contain
examples between the period of March 2006 up to August
2007.

Stock Avg. error (%) Avg. num. of factors
1-9 10-19 20-27 1-9 10-19 20-27

PETR3 23, 44 15, 20 6, 73 3 4 6
PETR4 17, 77 10, 66 3, 77 3 3 4
VALE5 16, 02 9, 51 3, 73 3 3 4
CSNA3 25, 53 13, 73 5, 66 4 3 5
USIM5 20, 16 11, 70 4, 83 3 3 4
BBDC4 23, 22 12, 31 5, 54 3 3 4
ITSA4 25, 07 14, 99 5, 95 2 3 3
ITAU4 24, 84 12, 28 4, 86 4 3 4
GOAU4 28, 33 15, 99 7, 40 4 3 3

Table 2. Parameter selection results for the PLS

For the SVR algorithm, we made experiments with a
RBF kernel, shown in tables 7,8,9 and 10, and a default
nu = 0.5 parameter. We perform a grid search to find
the best C and Gamma parameter for every model of the
day. The range used for C is [2−5, 215] and for Gamma is
[2−15, 23]. We can see the best parameter selection results
in the table 3. For the PLS algorithm, in table 2, we made
experiments using a range [1, 30] of number of factors. The
interesting finding is that PLS algorithm finds better results
with a few number of factors. The few factors explain the



Stock Avg. error (%)
1-9 10-19 20-27

PETR3 22, 49 14, 75 6, 83
PETR4 18, 00 10, 90 3.88
VALE5 16, 48 9, 93 3.81
CSNA3 24, 99 13, 81 5, 56
USIM5 20, 90 11, 46 4, 88
BBDC4 22, 13 12, 55 5, 72
ITSA4 24, 59 14, 56 6, 25
ITAU4 23, 68 12, 28 4, 88
GOAU4 28, 07 15, 98 7, 20

Table 3. Parameter selection results for the SVR

hidden components of a financial time series such as sazon-
ality, ciclic behaviour and tendency.

5 Forecasting Results

Table 4 presents the forecasting results when considering
only the first nine intervals of the trading day. When com-
puting the results, the average of the pencentage error for
each interval is computed. Then, these errors are averaged,
producing a number that indicates the system error over the
considered intervals. We can see that our model benefits
from the prior intraday information of the day, outperform-
ing the naive strategy. The error reductions are significant
with a 55% reduction for the best case (CSNA3) and a 19%
error reduction for the worst case (USIM5). In table 4, we
can also see that both PLS and SVR have competitive re-
sults in the beginning of the day (first nine intervals) with
a slightly advantage for the PLS predictor. The minimum
average percentage error obtained is 17, 44% for PETR4
stock and the maximum is 26, 86% for PETR3 stock. These
results are very interesting because PETR3 and PETR4
stocks represents the same company.

SVR PLS Naive Best Reduction
Stock Avg(%) Std Avg(%) Std Avg(%) Std |Naive−minError|

Naive

PETR3 27, 28 4, 64 26, 86 4, 55 38, 42 3, 93 0, 28
PETR4 18, 60 3, 10 17, 44 2, 59 22, 38 2, 73 0, 22
VALE5 17, 88 3, 22 17, 70 3, 01 23, 44 2, 57 0, 24
CSNA3 20, 41 3, 50 18, 77 4, 00 29, 80 3, 56 0, 55
USIM5 20, 28 2, 21 19, 75 1, 74 24, 64 2, 97 0, 19
BBDC4 21, 85 3, 23 20, 34 3, 55 27, 97 2, 36 0, 27
ITSA4 23, 32 3, 27 26, 23 3, 77 35, 61 3, 76 0, 34
ITAU4 21, 65 3, 08 20, 99 3, 24 28, 66 3, 26 0, 26
GOAU4 26, 23 4, 33 26, 65 3, 92 34, 47 3, 80 0, 23

Table 4. Results for the initial intervals of the day (1-9)

In the middle of the market day (intervals 10 to 19), as
shown in Table 5, the percentage error for all stocks is be-
low to 18%. The best result is for the VALE5 stock, which
has an average percentage error of 9, 34%. The worst re-
sult is for the GOAU4 stock, which has a percentage error
of 17, 07%. Also, our forecasting error compared to the
naive strategyr is about 33, 11% in average better. Note
that we can see an significant improvement of the results
for the middle of the day compared to the beginning of the
day. There are two reasons for this improvement. One rea-

son is that in the middle of the day the problem becomes
more easy to solve. Suppose we are exactly in the middle
of the day andwe have to estimate the overall volume of the
day. One trivial way is to sum all the previous intervals of
that day and then multiply by 2. Knowing that the intraday
volume of stocks has U−Shape pattern, we can approxi-
mate the volume of the day with the initial volume of the
day. However, this strategy is not well suited, because the
U−shape can be delayed or may not occur for some ab-
normal days. The second reason is that the opening of the
foreign market impacts so much on the beginning of the
Bovespa market day, in a way that causes much oscillation
in the beginning of the day.

SVR PLS Naive Best Reduction
Stock Avg(%) Std Avg(%) Std Avg(%) Std |Naive−minError|

Naive

PETR3 15, 77 1, 74 15, 43 1, 52 24, 41 3, 05 0, 36
PETR4 9, 80 1, 75 9, 88 1, 19 14, 17 1, 87 0, 30
VALE5 9, 34 1, 35 9, 54 1, 27 14, 98 2, 08 0, 37
CSNA3 11, 67 1, 56 10, 74 1, 23 19, 22 2, 39 0, 44
USIM5 14, 30 2, 56 14, 37 2, 58 17, 92 2, 57 0, 20
BBDC4 11, 12 2, 18 11, 11 1, 68 18, 89 2, 92 0, 41
ITSA4 15, 21 4, 70 15, 35 2, 81 23, 12 3, 63 0, 34
ITAU4 13, 42 2, 38 13, 04 2, 02 18, 73 3, 07 0, 30
GOAU4 17, 07 2, 47 17, 12 2, 44 23, 24 2, 57 0, 26

Table 5. Results for the middle intervals of the day (10-19)

Finally, at the end of the market day, as shown in
Table 6, our proposed model outperforms the traditional
model by 45, 66% on average. The best result is for PETR4
with 3, 93% on average of percentage error and the worst
result is for GOAU4 with an average percentage error of
6, 97%. Besides the competitive results between PLS and
SVR, up to the middle of the market day, curiously, SVR
presents better results for all stocks in the final of the mar-
ket day.

SVR PLS Naive Best Reduction
Stock Avg(%) Std Avg(%) Std Avg(%) Std |Naive−minError|

Naive

PETR3 6, 77 3, 20 6, 89 3, 19 14, 02 3, 92 0, 51
PETR4 3, 93 2, 18 4, 14 2, 21 7, 38 2, 40 0, 46
VALE5 4, 16 2, 03 4, 19 2, 01 7, 58 2, 57 0, 45
CSNA3 5, 03 2, 19 5, 17 2, 06 9, 17 3, 21 0, 45
USIM5 4, 95 2, 31 5, 29 2, 64 8, 64 2, 97 0, 42
BBDC4 5, 10 2, 14 5, 24 2, 18 9, 19 3, 08 0, 44
ITSA4 5, 02 2, 33 5, 78 2, 79 10, 55 3, 88 0, 52
ITAU4 4, 81 2, 28 4, 88 2, 24 8, 76 2, 88 0, 44
GOAU4 6, 97 3, 48 7, 30 3, 43 12, 09 4, 05 0, 42

Table 6. Results for the final intervals of the day (20-27)

In figure 2, we show an example of the forecasting
error reduction during the day, for the VALE5 stock. Note
that, SVR and PLS have competitive results and their be-
haviour are similar during the day.

6 Conclusions and Future Works

An accurate volume forecasting can be useful for tasks such
as portfolio management, asset allocation and specially in
algorithm trading. In algorithm trading, volume is an im-
portant characteristic of the market, especially for investors
who want to minimize the market impact on their execution
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Figure 2. An example of prediction error during the day for
VALE5 daily volume.

orders. Besides the great importantce of volume prediction
for the market, there are few studies in financial and ma-
chine learning literature related to volume forecasting. The
forecasting models used are usually for predicting partial
or overall volume of a day.

In this work, we predict the overall volume of the day
dealingwith both overall and partial volume of the day. The
idea is to use the partial volume information during the day
for a better daily volume prediction. The main contribution
of our work is a dynamic model for daily volume forecast-
ing. This model updates the intraday information at each
15min−interval. Also, we use a PLS and SVR machine
learning algorithms to predict volume, differently from the
work of [Bialkowski et al., 2006] that uses a Bayesian ap-
proach. Our model outperforms the naive predictor for all
stocks. Mreover, our model can forecast the daily volume
in the beginning, middle and end of the day, respectively,
with an average percentual error of 21, 26%, 12, 89% and
5, 19%.

Our work can be used in such applications related to
automated trading, portfolio management and specially in
algorithm trading. In the algorithm trading, an institutional
investor can use the daily volume prediction for better es-
timates of partial or integral volume of the day. The insti-
tutional investor can choose the daily volume estimates, in
tables 4,5 and 6 that better satisfies his/her necessities to a
certain threshold error. It can be done by choosing a partic-
ular percentage error that better the institutional investor’s
restrictions. Applications for algorithm trading usually use
the volume as an additional information for a VWAP strat-
egy.

Due to the aim of improving our single stock daily
volume models, we are to extend our work to a multi-stock
model. For this model, we can use correlated stocks as
features or samples so as to improve a single stock predic-
tion. An empirical analysis of stock correlations should be
used in order to choose the most correlated stocks. As a

possible future proposition, the predictors presented in this
work (PLS and SVR) could be used as a committee so as
to achieve better results. The main motivation for apply-
ing this committee of predictors would be the fact that the
results of both are very competitive.

Stock C1 g1 C2 g2 C3 g3 C4 g4 C5 g5 C6 g6
PETR3 23 3, 70.10−4 21 4, 48.10−3 25 1, 28.10−3 29 3, 10.10−5 29 3, 10.10−5 27 1, 06.10−4

PETR4 25 1, 28.10−3 23 4, 48.10−3 2−1 5, 4.10−2 21 1, 56.10−2 27 1, 06.10−4 21 5, 4.10−2

VALE5 27 1, 06.10−4 21 4, 48.10−3 23 1, 56.10−2 25 1, 56.10−2 25 4, 48.10−3 23 1, 56.10−2

CSNA3 213 1, 06.10−4 211 3, 10.10−5 27 4, 48.10−3 21 4, 48.10−3 27 1, 06.10−4 23 1, 28.10−3

USIM5 211 1, 28.10−3 2−1 5, 4.10−2 21 1, 56.10−2 21 5, 4.10−2 29 3, 10.10−5 27 3, 10.10−5

BBDC4 27 1, 06.10−4 25 3, 70.10−4 213 1, 06.10−4 211 3, 70.10−4 213 1, 06.10−4 27 3, 70.10−4

ITSA4 23 1, 28.10−3 21 1, 56.10−2 21 1, 56.10−2 27 1, 06.10−4 25 3, 70.10−4 23 1, 28.10−3

ITAU4 2−3 6, 59.10−1 27 3, 10.10−5 25 3, 70.10−4 211 1, 06.10−4 213 3, 10.10−5 25 4, 48.10−3

GOAU4 29 3, 10.10−5 29 3, 10.10−5 21 5, 4.10−2 21 5, 4.10−2 27 4, 48.10−3 23 4, 48.10−3

Table 7. SVR validation parameters for intervals 1-6

Stock C7 g7 C8 g8 C9 g9 C10 g10 C11 g11 C12 g12 C13 g13
PETR3 23 1, 56.10−2 27 1, 28.10−3 211 3, 10.10−5 211 1, 28.10−3 21 1, 56.10−2 27 1, 28.10−3 27 1, 28.10−3

PETR4 23 4, 48.10−3 23 1, 28.10−3 29 3, 10.10−5 23 1, 28.10−3 25 3, 70.10−4 25 3, 70.10−4 25 3, 70.10−4

VALE5 25 3, 70.10−4 23 4, 48.10−3 213 3, 70.10−4 25 4, 48.10−3 23 1, 28.10−3 29 3, 10.10−5 29 3, 10.10−5

CSNA3 21 4, 48.10−3 27 1, 28.10−3 29 1, 28.10−3 213 1, 06.10−4 29 3, 70.10−4 29 1, 28.10−3 23 1, 28.10−3

USIM5 25 1, 56.10−2 21 4, 48.10−3 23 4, 48.10−3 23 4, 48.10−3 211 3, 70.10−4 211 3, 10.10−5 25 4, 48.10−3

BBDC4 211 3, 70.10−4 213 3, 70.10−4 29 3, 70.10−4 27 3, 70.10−4 211 3, 10.10−5 211 1, 06.10−4 213 3, 10.10−5

ITSA4 27 1, 06.10−4 29 3, 10.10−5 21 1, 56.10−2 21 1, 56.10−2 25 1, 28.10−3 21 1, 56.10−2 25 4, 48.10−3

ITAU4 25 1, 28.10−3 29 1, 28.10−3 211 3, 10.10−5 29 1, 28.10−3 29 3, 70.10−4 29 1, 28.10−3 211 1, 28.10−3

GOAU4 23 1, 56.10−2 21 1, 56.10−2 23 4, 48.10−3 23 4, 48.10−3 23 4, 48.10−3 23 4, 48.10−3 23 4, 48.10−3

Table 8. SVR validation parameters for intervals 7-13

Stock C14 g14 C15 g15 C16 g16 C17 g17 C18 g18 C19 g19 C20 g20
PETR3 29 1, 28.10−3 211 3, 70.10−4 213 3, 70.10−4 27 1, 28.10−3 21 1, 56.10−2 211 1, 28.10−3 25 4, 48.10−3

PETR4 211 1, 28.10−3 29 1, 06.10−4 29 1, 06.10−4 27 3, 70.10−4 213 3, 10.10−5 211 1, 06.10−4 211 3, 10.10−5

VALE5 23 1, 28.10−3 27 1, 06.10−4 29 1, 28.10−3 25 1, 28.10−3 27 1, 06.10−4 213 3, 70.10−4 27 3, 70.10−4

CSNA3 27 1, 28.10−3 29 3, 70.10−4 25 1, 28.10−3 211 1, 06.10−4 27 1, 06.10−4 23 4, 48.10−3 25 1, 28.10−3

USIM5 27 1, 28.10−3 29 1, 06.10−4 27 3, 70.10−4 213 1, 06.10−4 29 1, 06.10−4 29 1, 06.10−4 213 3, 70.10−4

BBDC4 211 1, 06.10−4 213 1, 06.10−4 213 1, 06.10−4 211 3, 10.10−5 213 3, 10.10−5 29 1, 06.10−4 213 3, 10.10−5

ITSA4 27 4, 48.10−3 25 4, 48.10−3 25 1, 28.10−3 211 1, 06.10−4 25 1, 28.10−3 29 3, 10.10−5 29 3, 10.10−5

ITAU4 27 1, 28.10−3 29 3, 10.10−5 25 1, 28.10−3 27 1, 06.10−4 29 3, 10.10−5 211 3, 10.10−5 29 1, 06.10−4

GOAU4 23 4, 48.10−3 23 4, 48.10−3 25 1, 28.10−3 23 4, 48.10−3 25 1, 28.10−3 25 3, 70.10−4 29 3, 10.10−5

Table 9. SVR validation parameters for intervals 14-20
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Stock C21 g21 C22 g22 C23 g23 C24 g24 C25 g25 C26 g26 C27 g27
PETR3 29 1, 28.10−3 211 3, 70.10−4 213 3, 70.10−4 27 1, 28.10−3 21 1, 56.10−2 211 1, 28.10−3 25 4, 48.10−3

PETR4 211 1, 06.10−4 211 1, 06.10−4 29 1, 06.10−4 211 3, 10.10−5 27 1, 06.10−4 213 3, 10.10−5 29 3, 10.10−5

VALE5 213 3, 10.10−5 213 1, 06.10−4 27 3, 70.10−4 29 3, 10.10−5 211 1, 06.10−4 211 3, 10.10−5 29 1, 06.10−4

CSNA3 25 4, 48.10−3 27 3, 70.10−4 211 3, 10.10−5 211 1, 06.10−4 211 3, 10.10−5 29 3, 10.10−5 213 3, 10.10−5

USIM5 23 1, 28.10−3 21 4, 48.10−3 23 4, 48.10−3 23 4, 48.10−3 23 4, 48.10−3 211 3, 10.10−5 27 3, 70.10−4

BBDC4 211 1, 06.10−4 29 1, 06.10−4 213 3, 10.10−5 213 1, 06.10−4 211 1, 06.10−4 27 1, 28.10−3 29 3, 70.10−4

ITSA4 213 3, 10.10−5 27 3, 70.10−4 211 3, 70.10−4 213 1, 06.10−4 211 3, 10.10−5 213 3, 10.10−5 211 1, 06.10−4

ITAU4 213 3, 10.10−5 29 1, 06.10−4 213 3, 10.10−5 211 3, 10.10−5 211 3, 10.10−5 29 3, 70.10−4 25 1, 28.10−3

GOAU4 27 1, 06.10−4 213 3, 70.10−4 25 1, 28.10−3 213 3, 10.10−5 25 4, 48.10−3 27 1, 28.10−3 213 1, 06.10−4

Table 10. SVR validation parameters for intervals 14-27
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