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Abstract— Agent-oriented software engineering and software 
product lines are two promising software engineering 
techniques. Recent research work explores the integration 
between them to allow reuse and variability management in 
the context of complex systems. However, the automatic 
product derivation process is not addressed in the current 
literature. In this paper, we present our proposed approach to 
deal with multi-agent systems product lines (MAS-PL) 
variability management and automatic product derivation. 
Our approach is implemented as an extension of the GenArch 
product derivation tool. A case study illustrates how the 
proposed approach can be used to derive products (instances) 
from a MAS-PL. 

Resumo— Engenharia de software orientada a agentes e linha 
de produtos são duas técnicas de engenharia de software 
promissoras. Trabalhos recentes exploram a integração entre 
essas técnicas para permitir reuso e gerência de variabilidade 
no contexto de sistemas complexos. No entanto, o processo de 
derivação automática não é abordado na literatura corrente. 
Este artigo apresenta uma abordagem para lidar com gerência 
de variabilidades e derivação automática de produtos em 
linhas de produto de sistemas multi-agentes (LP-MAS). Ela é 
implementada como uma extensão de uma ferramenta de 
derivação de produtos existente. Um estudo de caso ilustra 
como a abordagem proposta pode ser utilizada para derivar 
(instanciar) produtos de uma LP-MAS. 

Keywords-Multi-agent Systems, Software Product Lines; 
Application Engineering; Model-driven Development; Product 
Derivation Tool. 

I.  INTRODUCTION 

A wide range of modern software systems present several 
common characteristics, e.g. pro-activity, autonomy, context-
awareness and high interactivity, which have been 
challenges for the software engineering discipline. These 
systems are usually distributed in dynamic and uncertain 
environments and have multiple loci of control. A not 
exhaustive list of application domains that illustrate this 
scenario are robotics, decision-support, personal-assistance, 
vehicle insurance, simulation, medical-record processing and 
e-commerce. These complex and distributed systems call for 
new software engineering methods and techniques to address 
their particularities. Among several approaches that have 

aimed at developing this kind of systems [1], [2], agent-
based approaches are often the choice [3], which involve 
metaphors such as autonomous agents, agent goals and agent 
societies. As a consequence, advances in the area of Agent-
oriented Software Engineering (AOSE) have been proposed 
through novel techniques such as methodologies, modeling 
languages, processes, and implementation strategies directed 
to Multi-agent Systems (MASs). AOSE [4] is a prominent 
software engineering paradigm, which addresses the 
analysis, design and implementation of software systems 
based on these higher level abstractions, i.e. agents, roles, 
organizations, structuring applications with autonomous, 
pro-active and communicative components. 

Even though the contributions of the AOSE have 
significantly improved the development of distributed and 
complex systems, current AOSE methodologies have barely 
taken into account the adoption of extensive reuse practices 
that may bring an increased productivity and quality to the 
software development [5]. Software reuse techniques, such 
as component-based development, object-oriented 
application frameworks and libraries, patterns, have been 
widely used in the software engineering context to promote 
reduced time-to-marked, quality improvement and lower 
development costs. A new promising trend is Software 
Product Lines (SPLs), which have become a mainstream 
reuse practice that addresses the design and implementation 
of a set of domain related artifacts in order to deliver high 
quality customized software in a short time-to-marked by the 
exploitation of applications commonalities. 

Only recent research [6], [7], [8] has explored the 
integration between SPLs and agent-based approaches, 
which have been denoted by Multi-agent Systems Product 
Lines (MAS-PLs). The main aim of MAS-PLs is the 
incorporation of the benefits of both SPL and MAS and 
allowing reuse and variability management in the context of 
complex systems. Research work associated with the MAS-
PL development has proposed extensions of MAS 
methodologies [6], [7] and new processes [8] to support the 
analysis, design and implementation of MAS-PLs. Although 
these proposed approaches provided substantial advances in 
the MAS-PL development, they focused in the domain 
engineering process and little effort has been done in the 
application engineering process, in which the applications of 
the SPL are built by reusing domain artifacts and exploiting 



the SPL variability. Moreover, they do not provide tool 
support in order to allow an effective product derivation 
process. Given that the success of the application 
engineering process is directly associated with the 
effectiveness of the SPL [9], there is a clear need of (i) 
approaches that address this process of the MAS-PL 
development and (ii) product derivation tools that automate 
the instantiation process by facilitating the selection, 
composition, configuration and integration of MAS-PL 
assets and their respective variabilities. This is particularly 
essential in the context of MASs, given that they typically 
encompass several concerns (e.g. trust, coordination, 
transaction, state persistence) that are implemented by 
different technologies, application frameworks or platforms. 
This fact demands managing plenty of core assets and their 
configuration, which in turn is highly error-prone and time-
consuming without the adoption of appropriate techniques 
and tool support. 

Modern software engineering approaches, such as 
Generative Programming [10] and Software Factories [11], 
motivate the definition of mechanisms to support automatic 
product derivations through the use of domain-specific 
languages (DSLs) and code generators. Several product 
derivation tools based on feature model [12] or DSLs [10], 
[11] have already been proposed and are used in the industry. 
Many of these tools are generic enough to deal with MAS-
PLs implemented using agent frameworks and platforms 
based on object-oriented technology. However, the 
configuration knowledge associated with agent abstractions 
are not captured by these tools, which is essential 
information for tracing features to agent 
concepts/abstractions and for a better MAS-PL management 
and evolution. 

In this paper, we present an approach that addresses the 
application engineering process for MAS-PLs. The main 
goal of our approach is to provide models to capture the 
configuration knowledge associated with agent abstractions, 
thus enabling the MAS-PL variability management and 
automatic product derivation. Our approach extends a 
model-based approach [13] by the incorporation of domain-
specific architecture models and dependency links among 
models already provided (e.g. feature model) and the new 
domain-specific architecture model. This approach [13] is 
implemented by the GenArch tool [13], [14], a model-driven 
product derivation tool that aims at defining a lightweight 
process to achieve automatic product derivation. Using the 
information provided by an agent-specific architecture 
model, the extended tool allows to automatically deriving 
specific products of MAS-PLs. This model allows specifying 
agent abstractions and concepts, e.g. agents, goals and plans. 
The tool is then extended to incorporate this model and to 
allow deriving agents implemented with Jadex, a widely 
adopted agent implementation framework [15]. We evaluate 
our approach by comparing it with a manual derivation 
process based on configuration files. 

The remainder of this paper is organized as follows. 
Section II provides a brief background on the main 
approaches related to this paper, i.e. MASs and SPLs. 
Section III gives an overview of the OLIS MAS-PL, which is 

used to illustrate and motivate our approach. The main 
contributions of this paper are presented in Sections IV, V 
and VI, which present our application engineering approach 
to allow the automatic derivation of MAS-PLs, an evaluation 
of our approach and point out some discussions about the 
proposed approach, respectively. Section VII presents related 
work, followed by Section VIII, which concludes this paper 
and gives directions for future work. 

II. BACKGROUND 

MAS-PLs are the integration between MASs and SPLs, 
whose aim is to take advantage of both approaches and help 
on the industrial exploitation of MASs. In this section, we 
introduce multi-agent systems (Section II-A) and software 
product lines (Section II-B) in order to provide a background 
for the reader understand the approach presented in this 
paper. In addition, we present the GenArch (Section II-C), 
our previous work on the product derivation process of 
SPLs. 

A. Multi-agent Systems 

In the context of software engineering, MASs are viewed 
as a paradigm, which addresses the development of systems 
that contain many dynamically interacting components, each 
with their own thread of control while engaging in complex, 
coordinated protocols. The main idea of AOSE [4] is to 
decompose complex problems into autonomous, pro-active 
and reactive entities with social ability, namely agents. 
Besides the agent concept, agent-oriented approaches are 
based on high level abstractions, such as roles and 
organizations, which become natural metaphors for 
developing complex and distributed systems. 

A main difference between an agent and an object is that 
the former encapsulates not only state, but also the behavior 
selection process and when such behaviors are necessary. 
Hence, agents are typically developed with cognitive abilities 
usually modeled as goals to be achieved, plans to achieve 
these goals and beliefs (mental state) necessary to execute 
plans. 

B. Software Product Lines 

Software product lines (SPLs) have emerged as a 
mainstream software development practice to promote 
improvements in the time-to-market, cost, productivity and 
software quality. A SPL comprises a set of products 
(variant), scoped to a specific market segment (domain) and 
based on inter-product commonality and variability. 
Software Product Line Engineering (SPLE) is a paradigm to 
develop software applications using mass customization, and 
a common and flexible architecture (platform) implemented 
by a set of reusable assets in order to deliver high quality 
software in a short time-to-marked with a significant reduced 
cost. SPLE typically specifies, designs and implements 
software products in terms of features. A feature [10] is a 
system property that is relevant to some stakeholder. 
Features are typically organized into feature models [16] and 
have been widely used to represent variability in a domain. It 
provides an ample description of the SPL requirements, 
capturing commonalities and discriminating among products 



in a SPL. In addition, a feature model also models constraints 
among features. A constraint can be a first-order logic 
expression that models dependency rules among features. It 
can describe: (i) illegal combinations of features; or (ii) 
dependence among features. 

C. GenArch: a Model-based Product Derivation Tool 

GenArch [13] is a model-based product derivation tool 
founded on generative programming [10]. The variability 
management in the GenArch approach is accomplished by 
means of three models: (i) feature model (problem space); 
(ii) architecture implementation model (solution space); and 
(iii) configuration model (configuration knowledge). The 
approach uses the feature model proposed in [10], which 
aggregates additional information, such as feature cardinality 
and attributes, to the one proposed in FODA [16]. The 
architecture model defines a visual representation of the SPL 
implementation elements (classes, aspects, templates, 
folders, files, and fragments) in order to later relate them to 
domain features. Fragments are used to aggregate pieces of 
code (or text) that implement a specific feature. They are 
mainly used to represent variabilities that exist in 
configuration files, e.g. XML or properties files. Templates 
are used to define incomplete implementation elements, 
which are either configuration files or classes and aspects, 
that contain common and variable code from a SPL. The 
variable parts of a template are customized based on 
information provided by the derivation models. Finally, the 
configuration model is responsible for defining the mapping 
between features and implementation elements. It represents 
the configuration knowledge from a generative approach 
[10], being fundamental to link the problem space (features) 
to the solution space (implementation elements). These 

models provide the necessary information to derive products 
from a SPL. 

Based on this approach, the GenArch tool offers a code-
oriented variability management, which supports automatic 
product derivation based on three main steps: (1) automatic 
models construction; (2) artifacts synchronization; and (3) 
product derivation. Figure 1 shows an overview of the 
GenArch approach. The importing module enables the 
creation of initial versions of the derivation models (Step 1) 
by parsing the code assets that implement the SPL 
architecture. It is based on specific annotations to 
characterize that a particular Java code asset addresses a 
specific feature (@Feature) and/or represents a variation 
point (@Variability), such as a hotspot framework class. 
The synchronizer module keeps the consistency between 
GenArch derivation models and SPL code assets (Step 2). 

The GenArch product derivation process (Step 3), i.e. the 
customization and compositions of the SPL architecture, is 
driven by an instance (also known as configuration) of the 
feature model. So, the first step of the GenArch product 
derivation process is the creation, by an application engineer, 
of this feature model configuration. During the derivation 
process, GenArch decides, based on both feature model 
configuration and configuration model, which code assets 
will be selected and customized. Template technology is 
used to implement the elements that must be customized in 
the derivation time. A template is able to collect information 
from derivation models to customize its respective variable 
parts of code. More details about GenArch templates can be 
found in [13]. The GenArch derivation process is concluded 
with code generation based on the processing of templates 
and the loading of the selected and generated code assets. 
Additional details about GenArch tool can be found in [13]. 

Figure 1.  GenArch Approach Overview 



1) GenArch Architecture Overview 
GenArch has been developed as an Eclipse [17] plug-in 

using different generative technologies available for this 
platform (see Figure 1). Some of them are: (i) Eclipse 
Modeling Framework (EMF) [18] – used to specify GenArch 
derivation models; (ii) openArchitectureWare (oAW) [19] – 
used to deal with templates; and (iii) Java/Aspect 
Development Tooling (JDT/AJDT) [20] API – used to 
browse the Abstract Syntax Tree (AST) of Java classes and 
AspectJ aspects. This allows us to parse code assets (classes, 
aspects, configuration files), and process Java annotations 
and metadata in order to enable the automatic creation of 
GenArch models.  

The feature model used in our tool is specified by a 
separate plugin, called FMP (Feature Modeling Plugin) [21]. 
It allows modeling the feature model proposed in [10], which 
supports modeling mandatory, optional, and alternative 
features, and their respective cardinality. 

III. OLIS MAS-PL: THE MOTIVATING EXAMPLE 

In this section, we present the OLIS case study, which is 
a MAS-PL of web systems that provide several personal user 
services, such as calendar and events announcement. The 
OLIS product line defines services that can be configured to 
automate user tasks by means of software agents (optional 
features). Because of that, it can be considered a MAS-PL, 
which enables the introduction and customization of some of 
its agents. The OLIS case study will be used, in next section, 
to exemplify how the approach for the derivation process of 
MAS-PLs proposed in this paper is able to automatically 
derive MAS-PL members. 

The four main services that compose OLIS are: (i) User 
Management – allows users to register themselves and 
configure their account; (ii) Events Announcement service – 
allows users to announce events to other system users 
through an events board; (iii) Calendar service – allows users 
to schedule events in their calendar. Besides the information 
of events published in the events board, calendar events have 
a list of users that participate of it. Additionally, announced 
events can be imported to the users' calendar; and (iv) 
Weather service – provides information about the current 
weather conditions and the forecast of a location. Besides 
these services, the OLIS MAS-PL provides an alternative 
feature: the event type. The product line can derive systems 
for dealing with generic, academic and travel events. Figure 
2 shows the feature model of the OLIS MAS-PL, detailing 
its services and their optional features. Additional details 
about the OLIS architecture and implementation can be 
found in [22]. 

There are different customizations that can be applied to 
the OLIS services. These customizations represent optional 
features of the OLIS MAS-PL. Examples of such 
customizations are: (i) Events Reminder – sends notifications 
to notify the user about events that are about to begin; (ii) 
Events Scheduler – checks the event participants' schedule to 
verify if a new event conflicts with other existing ones. In 
this case, the system suggests a new date for the calendar 
event that is appropriate according to the participants’ 

schedule; and (iii) Events Suggestion – automatically 
recommends events based on user preferences. 

 
Figure 2. OLIS Feature Model 

Most of the optional OLIS features provide a pro-active 
and autonomous behavior for the system services. Due the 
suitability of the agent abstraction to model this kind of 
behavior, we have introduced software agents and agent 
roles into the architecture to implement these features, which 
we named agent features. This autonomy property refers to 
agents able to act without the intervention of humans or other 
systems: they have control both over their own internal state, 
and over their behavior [23]. OLIS agent features are 
realized by the Jadex framework. This framework addresses 
developing agents that follow the belief-desire-intention 
(BDI) model [24]. Through a reasoning engine, this 
framework makes it easier the development of cognitive 
agents. The Jadex provides agent concepts as first-class 
elements, which are agents, believes, goals, plans, 
capabilities, events and expressions. In particular, a Jadex 
capability allows that beliefs, goals and plans to be placed 
together in a separated module, in a way that this module can 
be reused by different agents.  

The OLIS MAS-PL was designed in such way that the 
system can be evolved to incorporate new services without 
interfering in the existing ones. It was structured according to 
the Layer architectural pattern. The layers that compose the 
architecture are GUI, Business, and Data. 

A. Challenges on MAS-PL Product Derivation 

The application domain that we are currently exploring is 
MAS-PLs of web-based systems. Applications in this 
domain typically present a set of different concerns, e.g. 
transaction, persistence, pro-activeness and autonomy. 
Usually such concerns are resolved at the implementation 
level by different application frameworks. For example, in 
the OLIS case study, the pro-activeness and autonomy 
concerns are achieved by means of the Jadex framework. 
The use of these frameworks introduces new concepts in 
MAS-PL architectures that must be considered in their 



documentation. In addition, several frameworks are based on 
configuration files that must be manipulated in the product 
derivation process of product lines. 

The OLIS MAS-PL provides five optional features and 
one alternative feature with three different options, which 
lead to 96 different product configurations, not taking into 
account dependencies between features that restrict some of 
these product configurations. Even though the OLIS 
architecture was developed with appropriate techniques to 
modularize its features, the application engineer still needs to 
manually configure the artifacts that implement the MAS-
PL, including configuration files, during the derivation 
process, which is a challenging task. First, to ensure the 
reliability and consistency of the derivation process the right 
implementation elements must be selected. This selection 
must be in accordance with the selected features and 
dependencies among them. For instance, if the Event 
Suggestion feature was selected for a certain product, it must 
also contain the Configure User Preferences feature due to a 
feature constraint. Consequently, in the solution space, the 
agent that implements the Event Suggestion feature depends, 
directly, on the code assets that implement the Configure 
User Preferences feature. This process corresponds to the 
propagation of the feature selection from the problem space 
to implementation elements (solution space). Second, in the 
OLIS MAS-PL, for example, to manage variabilities and 
their dependencies, the application engineer needs to 
configure eleven Jadex agent definition files, which together 
add more than one thousand lines of code. Additionally, 
most of OLIS MAS-PL features have their implementation 
spread over more than two files, which makes it difficult and 
increase the complexity of understanding the mapping 
between different elements from the problem to the solution 
space. 

This scenario shows that without suitable variability 
management mechanisms to modularize the configuration 
knowledge and to deal with the large amount of variabilities, 
dependencies among features and heterogeneous 

implementation elements, the manual derivation process may 
become error-prone and time-consuming. 

Furthermore, despite some works [25], [26], [27] have 
stated how to automatically resolve dependencies among 
features in the feature model, there is still a lack of MAS-PL 
specific mechanisms that enable the propagation of this 
decision made in the problem space (feature model) to the 
solution space. A particularity of MAS-PLs is that they 
present additional abstractions, such as agents, beliefs and 
goals. MASs are designed with such abstractions, which are 
typically implemented based agent platforms that rely on 
object-oriented languages. Therefore, MAS-PLs require 
dealing with three different levels of abstractions: (i) feature; 
(ii) MAS design abstractions; and (iii) implementation 
elements. Current approaches allow mapping from (i) to (iii), 
however the configuration knowledge related to MAS 
abstractions are not captured by them. 

In this context, next section details an extension of the 
model-driven approach used in the GenArch approach that 
addresses the variability management and automatic product 
derivation of MAS-PLs. 

IV. AN APPROACH FOR AUTOMATING THE DERIVATION 

PROCESS OF MAS-PLS 

In Section 2, we presented the GenArch model-driven 
approach that allows to automatically deriving products from 
SPL architectures. In this section, we present how this 
approach was extended to address the variability 
management and automatic product derivation of MAS-PLs. 
Our approach was implemented as an extension of the 
GenArch approach. Figure 3 depicts the approach proposed 
in this paper, highlighting the differences from the previous 
version (Section II-C). 

Basically, our solution to manage the configuration 
knowledge associated with MAS-PLs is based on the agent-
specific architecture model. It provides modular variability 
management of agents and their related concepts and 
underlying implementation elements. This architecture 

Figure 3. GenArch approach extended to MAS-PL 



model is based on higher level abstractions, which latter are 
mapped to lower level ones. Lower level elements in our 
approach are any object-oriented concept, or configurations 
defined into Agent Definition Files (ADFs). An ADF is an 
XML file that captures a complete definition of an agent or a 
capability in the Jadex framework. It contains all relevant 
properties of an agent (e.g. beliefs, goals and plans). 

In next sections, we detail the approach describing (i) the 
agent-specific architecture model (Section IV-A); (ii) how to 
document and model the configuration knowledge (Section 
IV-B); (iii) how agent-specific implementation code assets 
(Jadex) are processed to create an initial version of the 
models (Section IV-C); and (iv) how the new models are 
used to automatically derive MAS-PL products, i.e. the 
MAS-PL derivation process (Section IV-D). Along all 
sections, our approach is illustrated with the OLIS MAS-PL, 
which was described in previous section. 

A. Agent-specific Architecture Models 

The aim of the agent-specific architecture model is to 
provide a formal and modular solution to document the 
configuration knowledge of MAS-PLs based on agent 
abstractions – it describes the MAS-PL architecture by 
means of agents, capabilities, goals, believes, and so on. 

Figure 4(M) shows the agent-specific architecture model 
that describes the OLIS implementation architecture using 
Jadex vocabulary. This model characterizes Jadex agents as 
an aggregation of capabilities, goals, beliefs, plans, events, 
and expressions. A capability, similar to an agent, can be 
associated with goals, beliefs, plans, events, expressions, and 
others capabilities. Finally, plans, goals, events, beliefs and 
expressions are simple elements. Figure 4(M) illustrates, for 
example, that the Weather agent encompasses three goals 
(getWeather, discoverLocation, consultWeather), 
one belief (client), and five plans (forecastRequest, 
weatherRequest, getWeather, discoverLocation, 
consultWeather). 

The agent-specific architecture model was specially 
designed to allow GenArch to deal not only with object-
oriented (Java) and aspect-oriented (AspectJ) elements 
(Section II-C), but also with Jadex ADFs during the 
derivation process (Figure 3). 

B. Adding New Levels to the Configuration Knowledge 

Besides documenting the SPL architecture by means of 
agent’s concepts, the agent-specific architecture model 
enables defining mapping relationships between these 
concepts and their respective implementation elements. For 
example, Figure 4 illustrates that the 
ForecastRequest.java and a code fragment called 
forecast_request_plan are directly related to the 
forecastRequest plan of the Weather agent.  

For the derivation process, each reference defines an 
implication constraint where the presence of the related 
lower level element depends on the positive evaluation of the 
presence of the higher level one. In other words, it means 
that, if the higher level element must be part of one product, 
then the associated lower level element must also compose 
this product. In the scenario illustrated in Figure 4, for 
example, if the Weather agent is selected to be part of one 
product, the ForecastRequest.java and 
forecast_request_plan must also be part of this 
product. 

The extended configuration model provided by our 
approach (Figure 4(C)) allows the domain engineer to define 
different levels of configuration. Fine-grained configurations 
can be created by the default mapping relationships of 
specific implementation elements (classes, aspects, files) to 
any product line feature [13]. Coarse-grained mapping 
relationships of Agent elements to product line features can 
be defined by domain engineers in specific views into the 
configuration model (Figure 4(C)). A mapping relationship 
between a feature expression and an architectural element 
(configuration model) defines an implication constraint 

Figure 4. OLIS Agent-architecture Model and Configuration Knowledge 



where the presence of the architecture element depends on 
the positive evaluation of the related feature expression. 

As it can be seen in Figure 4(C), the Weather optional 
feature was mapped to the Weather Agent. It means that the 
Weather Agent will only be part of the final product if the 
Weather feature is selected in the feature model 
configuration provided by an application engineer. The 
EventReminder, EventAnnouncer and 
EventScheduler variable capabilities are also mapped to 
specific features (Event Reminder, Event Announcement and 
Event Scheduler, respectively) and are subjected to the same 
evaluation. 

C. Automating the Generation of Agent-specific 
Architecture Models 

One of the main targets of our approach is to provide 
functionalities for parsing code assets metadata in order to 
automatically generate initial versions of the derivation 
models. Feature, configuration and architecture models can 
be automatically created by parsing: (i) the Eclipse Java 
project or directory that contains the implementation 
elements of a MAS-PL; (ii) the GenArch annotations 
introduced into the source code of Java classes; and (iii) the 
Jadex ADF description files. In Section II, we presented the 
automatic parsing of GenArch annotations. In this section, 
we show how Jadex-specific artifacts are processed to derive 
an initial version of their respective architecture model. 

The creation of Agents, Capabilities, Goals, Plans, 
Events and Expression elements in the agent-architecture 
model is accomplished by means of an automatic parsing of 
code assets (Jadex ADF and XML tags) that implement these 
elements (Figure 3). Each Jadex ADF can describe either 
agents or capabilities. Therefore, an ADF can demand the 
creation of an Agent or Capability element in the agent-
specific architecture model. The Goals, Plans, Events and 
Expressions are created from respective tags described in the 
ADF. The source codes that implements these elements are 
extracted to implementation model fragments. It also 
demands the creation of a mapping between the created 
implementation model fragments and the respective agent-
specific architecture model element. 

The initial version of these models, built automatically, 
may or must be refined by the domain engineer. This 
refinement is necessary in order to guarantee that: (i) the 
feature model represents all domain variability and 
commonalities; (ii) the architecture model represents the 
whole MAS-PL code assets; (iii) the agent-specific 
architecture model expresses the entire design of the agents 
that compose the MAS-PL; and (iv) additional mapping 
relationships between variability in the feature model and 
agent elements in the agent-architecture model. 

D. The MAS-PL Automatic Product Derivation Process 

As mentioned previously, our approach was implemented 
by extending the GenArch tool. Additional details of the 
implemented tool can be seen in [28]. In this section, we 
describe the derivation process of our approach, with some 
implementation details. This implementation is specific for 
the Jadex framework. 

The GenArch derivation process for the OLIS MAS-PL 
(or each MAS-PL based on the Jadex framework) is 
accomplished by the following steps: (i) selection of the 
Agents, Capabilities, Plans, Goals, Events, Expression that 
will compose the architecture of the instance (product) from 
the MAS-PL; (ii) selection of the code assets (class, aspects, 
files, components, folders) that will be part of the derived 
product; and (iii) customization of Jadex ADFs – ADFs are 
XML files that define agents and capabilities. 

The selection of agents, capabilities and other 
abstractions from the Jadex framework (step 1) is 
accomplished based on the configuration knowledge 
provided by the configuration model, which relates features 
to agent concepts. After that, the GenArch tool uses the 
information provided by the agent-specific architecture 
model (step 2) that relates agent concepts with 
implementation elements; to decide which implementation 
elements (classes, interfaces, aspects, etc.) will be part of the 
final product generated. The selection process is supported 
by the dependency links defined in both agent-specific 
architecture model and configuration model. To 
automatically compute these dependency links, we map them 
into a constraint satisfaction problem (CSP). Consequently, 
the CSP is evaluated with respect to a valid feature model 
configuration by a constraint solver. The purpose of a 
constraint solver is to find a valid value for each variable of 
the CSP that simultaneously satisfies all constraints in the 
CSP. Previous work [25], [26], [27] has shown how to 
transform feature models into a CSP in order to automate, for 
example, feature selection. In our work, we extend this 
technique to help the resolution of the implementation 
elements selection in the solution space. 

The customizations of the OLIS Jadex Agent and/or 
Capabilities ADFs are realized by means of template files 
(step 3). Figure 5 shows a summarized version of the 
template that implements the UserAgent ADF. This part of 
the code enables GenArch to customize the capabilities the 
UserAgent will contain. The LET statement enables the 
template to get the specified element (UserAgent) from the 
agent-specific architecture model. The FOREACH statement 
enables the template to iterate through the collection of 
capabilities of the UserAgent. Thus, for each capability 
presented in this collection, the template gets the code 
fragment associated with it, which is also defined in the 
agent architecture model (see Figure 4(M)), and writes the 
content in the generated file. It means that, if the application 
engineer selects the Event Reminder and Event Scheduler 
optional features and does not select the Event Suggestion, 
consequently the derived collection of capabilities will not 
contain the EventSuggestion capability. The content of 
each code fragment related with the selected elements will be 
written in the generated UserAgent ADF, as shown in 
Figure 5. 

V. EVALUATION 

This section summarizes our experience with the use of 
our approach to enable the automatic product derivation of 
MAS-PLs implemented using the Jadex framework. We use 



the OLIS case study to conduct a preliminary evaluation of 
the gain and effort of using our approach. 

TABLE I.  CONFIGURATION COST OF THE OLIS MAS-PL 

Feature Lines of Code/Files 

Configure User Preferences 3/1 

Event Reminder 114/2 

Event Suggestion 237/2 

Academic 125/2 

Event Scheduler 362/3 

Travel 175/2 

Generic 0 

Weather 224/1 

Total 1240/13 

 
Our first step was to quantify the cost of manually 

deriving products from the MAS-PL in terms of the number 
of files (and their size) needed to be manipulated in the 
derivation process, i.e. we have counted how many XML 
files and their lines of code an application engineer should 
deal with during the derivation process. Table I summarizes 
the total of lines of XML code that must be manipulated for 
each optional and variable feature implemented by the OLIS 
MAS-PL during the derivation process. Without appropriate 
mechanisms to modularize and make the configuration 
knowledge related with Jadex elements explicit, the 
application engineer would be required to know about the 
manual configuration of more than one thousand lines of 
XML code spread over 13 XML configuration files.  

By modeling the OLIS MAS-PL using the new agent-
specific architecture model we have assessed that it helps to 
reduce 100% the total amount of lines of XML code that 
must be manipulated. Once the models proposed in our 
approach are generated, the derivation process is performed 
automatically. In addition, this preliminary assessment also 
states the importance of the agent-specific architecture model 
to face the challenge associated with configuration 
knowledge that is usually found spread over different 
configuration files, as discussed in Section III-A. Table I also 
shows that most of the features have their configuration 
knowledge described in more than two files. In this way, our 

agent-specific architecture model also contributes to reduce 
the spreading of the configuration knowledge by aggregating 
information about all the configuration files in a unique 
model representation. 

Besides the benefits related to the amount of lines of 
XML code and modularization of the configuration 
knowledge, we believe that the agent-specific architecture 
model also brings advantages to the product line engineer to 
understand, localize and modify both the SPL architecture 
implementation and the associated configuration knowledge, 
thus contributing directly to the variability management. 

Although our approach brings the advantages discussed 
above, it requires an extra initial investment of building the 
derivation models. It also requires the addition of extra 
mapping relationships on the configuration model that maps 
feature to architectural elements (classes, files, agents, etc). 
Therefore, the second step of our evaluation was to measure 
the cost of building the models of our approach. The initial 
effort needed to build our approach models and its respective 
configuration knowledge was assessed by counting the 
number of operations needed to accomplish this task. An 
operation is (i) create a model; and (ii) include a model 
element. Table II presents the results for the OLIS MAS-PL.  

TABLE II.  MODELS CREATION COST OF THE OLIS MAS-PL 

Feature Number of Operations 

Feature Model 24 

Agent-specific Architecture Model 203 

Implementation Model 585 

Configuration Model 13 

Total 825 

 
Comparing the number of lines of code that must be 

manipulated and the number of operations of creating 
models, it can be seen that the latter is lower than the former. 
So, it indicates that the cost of adopting our approach is 
lower than manually deriving products. However, this 
comparison is between lines of code and operations, 
therefore we are aware that this evaluation may be unfair. As 
stated previously, this is our preliminary evaluation, and our 
goal is to perform a more sophisticated evaluation of our 
approach. 

 
Figure 5. User Agent ADF Template 



Furthermore, even though there is an initial cost of 
building the derivation models, it is spent only once, rather 
than each time of a product derivation. In the literature, it is 
discussed that the initial investment and the time-to-market 
of building a SPL is higher than building a single product. 
However, according to [29] this effort is usually 
compensated after the third derived product. Finally, the 
process of building an initial version of the architecture 
model and of the agent-specific architecture model can be 
amortized by the GenArch automatic model generation 
feature (described in Section IV-C). The simple model 
generation feature implemented by GenArch is able to create 
a complete version of these models, which are 95% of the 
effort to build the whole configuration knowledge.   We are 
currently exploring new mechanisms to improve the 
generation of this additional configuration knowledge from 
existing code artifacts (configuration files, classes, aspects, 
etc). 

VI. DISCUSSIONS 

Generalizing our Approach to Other Technologies. 
Despite the focus on the Jadex framework, our approach is 
generic enough to deal with different agent frameworks or 
platforms. In fact, GenArch has been evolving to incorporate 
new component technologies and aspect-oriented 
programming [13], [14]. This work is a first step in the 
direction of a generic derivation tool based on multiple 
domain and platform specific models. Multi-models can also 
improve the management and traceability of SPL features 
bringing several benefits to the change impact analysis 
during the SPL evolution. However, keeping the dependency 
links between these models and artifacts updated, 
synchronized and consistent is a difficult task. The 
configuration knowledge between feature models and the 
Jadex platform-specific model provided by our GenArch 
extension is a prominent solution to help the automatic 
generation of dependency links between models from 
problem to solution space. In the case of MAS development, 
the generation of the dependency links is still more important 
due to large amount of models and abstractions that the 
paradigm requires to leverage the abstraction level of 
software development.  

Using our approach to provide self-adaptation. Over the 
last years, the software engineering community has 
investigated how to support the development of dynamic 
evolutionary systems. A MAS can be seen as an open and 
evolutionary system, where agents can enter and leave at any 
time and dynamically modify its structure. Due to the 
autonomy property of agents, they also provide a low 
coupling model in which a change on any entity does not 
deeply affect the entire system. Thus, it can be adopted as a 
technique to implement software systems, in which an 
autonomous and pro-active agent is able to manage itself. On 
the other hand, Dynamic Software Product Line Engineering 
(DSLPE) [30] has emerged motivated by the application of 
SPLs in several dynamic domains, such as ubiquitous 
computing, context-aware computing, and autonomic 
computing. DSLPE can promote the reuse of domain-
specific adaptations across a family of related self-adaptive 

products while providing a systematic approach for dynamic 
variability management [30]. This paper can be seen as an 
initial attempt toward a SPL based approach to support self-
adaptation in MASs. Each different state of the MAS can be 
seen as a MAS-PL product. Feature model and Multi-level 
models can be used to provide to the system the capability to 
describe its properties and to reason about the possible 
adaptations at different abstraction levels. We are currently 
investigating how GenArch can also provide a feature 
derivation process, which enables the achievement of 
automatic feature deployment and reconfiguration. 

VII. RELATED WORK 

Only few works that consider the automatic development 
of MASs have been proposed. Kulesza et al. [31] present a 
generative approach that addresses the challenges in MAS 
modeling and development, mainly focusing on crosscutting 
agent features. The approach proposed by these authors is 
composed of: (i) a domain-specific language (Agent-DSL) 
used to model the orthogonal and crosscutting features of 
software agents; (ii) a code generator; and (iii) an aspect-
oriented architecture that encompasses a set of aspectual 
components that modularize the crosscutting agent features. 
The code generator is used to map the abstractions described 
in the Agent-DSL to specific compositions of objects and 
aspects in the proposed agent architecture. The approach 
proposed in this paper can be seen as an evolution of this 
previous approach by providing more extensible mechanisms 
to derive different domain and technology specific product 
lines and applications. In this paper, for example, we have 
demonstrated that our approach is suitable to address the 
product derivation of Jadex based applications.  

Hahn [32] presents a set of platform independent domain 
specific languages (DSLs), called DSML4MAS, which 
enable the definition of MASs in a graphical visualized 
manner. These DSLs are used to automatically generate a 
MAS in a model-driven architecture (MDA) manner. Similar 
to our approach, this work enables the MAS development 
based on the definition of high-level models. However, it is 
concerned only with the automatic generation of single 
systems, not addressing the development and automatic 
derivation of system families or SPLs. Our approach enables 
the mapping between MAS DSLs and feature models in 
order to allow the modeling and implementation of MAS-PL 
architectures with their respective variabilities, as well as to 
help the process of automatic product derivation of MAS-
PLs. 

VIII. CONCLUSION AND FUTURE WORK 

In this paper, we presented an approach that enables the 
automatic product derivation for Multi-Agent Systems 
Product Lines. The approach extended a model-driven 
approach implemented by GenArch, which is our existing 
product derivation tool. The main idea of our approach is to 
incorporate the agent-specific architecture model to the SPL 
specification in order to deal with higher level concepts, 
including agent concepts such as beliefs, goals and plans. In 
addition, we have provided means of linking this new model 
to the existing ones (feature and implementation models) to 



have the configuration knowledge that is needed for 
automating the product derivation process. Our approach 
was implemented as an extension of the GenArch tool. 
Besides providing the new model, we improved the tool to 
deal with files of the Jadex platform in order to generate an 
initial version of the model. The main benefit of our 
approach is to allow the automatic product derivation of 
MAS-PLs, however we point out other advantages: (i) with 
the domain-specific model, the knowledge of higher level 
elements are not spread and obfuscated into the code; and (ii) 
the quality and time of the derivation process are improved 
because dealing manually with lots of files and 
configurations is an error-prone and time-consuming task. 
We illustrated the use of our approach and the MAS-PL 
GenArch extension with the OLIS case study, which is a 
MAS-PL of web applications that provide personal services 
to users. We also presented a preliminary evaluation of our 
approach to show its effectiveness.  

As a future work, we aim at extending our approach to 
address the composition of different domain-specific 
architecture models. In the OLIS case study, for example, we 
are also using a Spring-specific architecture model [14], thus 
reflecting the composition between two different domain-
specific architecture model. We are currently working in a 
flexible approach that addresses this kind of composition 
exploring extensible mechanisms at the metamodel level. 
Finally, we intend to apply the tool in more complex and 
different MAS-PL case studies with the presence of both 
coarse and fine-grained variabilities. 
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