Increasing Users’ Trust on
Personal Assistance Software using a
Domain-neutral High-level User Model

Ingrid Nunes, Simone D.J. Barbosa, and Carlos J.P. de Lucena

PUC-Rio, Computer Science Department, LES - Rio de Janeiro, Brazil
{ionunes, simone, lucena}@inf.puc-rio.br

Abstract. People delegate tasks only if they trust the one that is going
to execute them, who can be a person or a system. Current approaches
mostly focus on creating methods (elicitation approaches or learning al-
gorithms) that aim at increasing the accuracy of (internal) user models.
However, the existence of a chance of a method giving a wrong answer
decreases users’ trust on software systems, thus preventing the task dele-
gation. We aim at increasing users’ trust on personal assistance software
based on agents by exposing a high-level user model to users, which
brings two main advantages: (i) users are able to understand and verify
how the system is modeling them (transparency); and (ii) it empow-
ers users to control and make adjustments on their agents. This paper
focuses on describing a domain-neutral user metamodel, which allows
instantiating high-level user models with configurations and preferences.
In addition, we present a two-level software architecture that supports
the development of systems with high-level user models and a mechanism
that keeps this model consistent with the underlying implementation.

1 Introduction

As web applications become increasingly interactive, accessible, and pervasive
the web is providing mechanisms that can help users extend their mental and
physical capabilities. The Web now provides access to huge amounts of well-
organized information and supports social interactions well beyond our physi-
cal limitations. Thus there are new challenges in managing both the quantity
of information and the complexity and timeliness of relationships. Multi-agent
Systems (MASs) [1], with roots not only in Artificial Intelligence (AI) but also
in distributed systems and software engineering, can incorporate autonomous
behavior to support web users in meeting many of these new barriers by free-
ing users from repetitive and tedious tasks. In addition, MASs, by providing
autonomous behavior, may be employed by web users to support access to in-
formation and decision-making. The concept of user (or personal) agents was
championed by Maes in 1994. In [2], she introduced the idea that autonomous
agents may be personal assistants who are collaborating with the user in the
same work environment. However, even though significant research effort has
been invested on developing user agents, we are far from their massive adoption.

People delegate tasks only if they trust the one that is going to execute them,
who can be a person or a system. For user agents, this claim is supported by the
study presented by Schiaffino & Amandi in [3]. Their study showed that users
fear having a completely automated agent. In addition, they concluded that a
large group of users is willing to adopt user agents only if they know exactly
what the agent is going to do, i.e. if they trust that the agent will perform
a behavior previously approved by them. Current approaches mostly focus on
creating methods (elicitation approaches or learning algorithms) that aim at
increasing the accuracy of (internal) user models. Nevertheless, the risk that a
method gives a wrong answer decreases users’ trust on software systems, thus
preventing the task delegation.

Our research aims at increasing the level of acceptance of user agents (and
task delegation to computer systems) by users. In order to achieve this our
goal is to increase users’ trust on personal assistance software based on two
main properties: (i) transparency; and (ii) power of control. The main idea is to
expose user models (or profiles) in an end-user-readable manner, and therefore
users can understand the system behavior (transparency). In addition, users can
manage their model to control the agents’ behavior (power of control).

In this paper we demonstrate steps in creating a model-driven approach
for developing personal assistance software based on high-level user models and
user agents. We present an approach to empower users with a high-level domain-
specific language that allows them to dynamically program and personalize their
agents. Even though inference models might reach the wrong conclusions about
user preferences and cause agents to take inappropriate actions, they can be
leveraged to create initial versions of the user model, so that users can make
fine-grained modification on it. The steps to be presented are: (i) a high-level
user metamodel to represent user configurations and preferences; and (ii) a soft-
ware architecture to build personal assistance software based on agents that are
adapted driven by instances of the proposed metamodel.

The proposed Domain-specific Model (DSM) (high-level user metamodel)
provides the necessary vocabulary to build an end-user configurations and pref-
erences language. Existing representation models of user preferences force users
to express their preferences in a particular way. Consequently, these works create
the need for elicitation techniques to interpret answers to questions and indirectly
build the user model. The language that our DSM creates allows users to config-
ure their agents and to express different kinds of preference statements, creating
a vocabulary that allows representing statements close to the ones expressed in
natural language. The proposed DSM is an application-domain-neutral meta-
model that may be instantiated to build different applications.

The paper also describes a software architecture to build personal assistance
software that follows our approach. The architecture is composed of user agents
that are dynamically adapted based on a user model that follows our metamodel.
In this sense, users’ customizations are represented in a high-level user model
and realized at the implementation-level by user agents. As configurations and
preferences may impact in different agents and their components, the user model

becomes a modularized view of users’ customizations, facilitating their manage-
ment, considering that they change over time. However, given that there are
users’ customizations represented in two different levels of abstractions, we also
present an algorithm that keeps both representations consistent.

This paper is organized as follows. Section 2 describes our metamodel. In
Section 3, we describe the software architecture for building personal assistance
software. Section 4 presents an evaluation of our metamodel by showing its
generality when used across different domains. Section 5 presents related work.
Finally, Section 6 concludes this paper.

2 A Domain-neutral User Metamodel

One of the most challenging tasks in building personal assistance software able to
act on users’ behalf is to capture particularities of the person being represented
(user model) so that the system can present an appropriate behavior. We aim
at exposing the user model to users in order to provide them the power of
controlling their agents and increasing the trust on the system. This user model
must be expressed with very high-level abstractions, otherwise users are not able
to understand them. This section presents our proposal of a domain-neutral high-
level user metamodel to represent users’ customizations.

We acknowledge the relevance of the existence of a reasoning algorithm for
user models. However, our goal is to use the proposed metamodel in a level higher
than the ones processed by algorithms. When users inform their preferences to
applications with restricted user models, e.g. models with boolean preferences,
they have to translate preferences statements expressed in natural language to
the one imposed by the application. Our goal with this high-level model is to
provide users with a larger vocabulary to express their preferences and leave the
task of translating preferences for a particular model to the system, as Figure 1
illustrates. For instance, a user may say: “My preference is not to buy a laptop
of the brand X, but I don’t care if the brand is A, B or C.” Suppose now that the
system uses a reasoning algorithm to process preferences expressed as a partial
order relation. We can represent that preference like this:

preference = {< A, X > < B, X > <C, X >}.

Therefore, our metamodel is implementation-independent.

It is important to highlight that our user metamodel distinguishes user con-
figurations from preferences, which we collectively refer to as customizations.
Configurations are direct and determinant interventions that users perform in
a system, such as adding/removing services or enabling optional features. They
can be related to environment restrictions, e.g. a device configuration. They are
represented by optional and alternative features that users choose for customiz-
ing their application. A feature, in turn, is any variable characteristic of the
system. On the other hand, preferences represent information about the users’
values that influence their decision making, and thus can be used as resources in
agent reasoning processes. They typically indicate how user rates certain options

Manual Configuration e

Elicitation Techniques
Preferences Implicit Learning
.‘I OE|
;é \J. .
\/ =

Domain;spe"crific High-level ~ Translation
User Model

Fig. 1. High-level User Model.

better than others in certain contexts. They are a representation of the cognitive
model of the user in order for agents to behave and make decisions in a way as
close as possible as users would do.

Our user metamodel is instantiated in a stepwise fashion. First, application
developers instantiate part of the metamodel for defining application-specific
abstractions and constraints. This is performed at development time. Second,
at runtime, the user instantiates preferences and configurations in order to cus-
tomize the personal assistant application. Our metamodel, which is an extension
of the UML metamodel', is depicted in Figure 2 in four different parts. Elements
of the UML metamodel, e.g. Class and Property, are either distinguished with
a gray color in diagrams or are referred to in properties. Next we describe our
metamodel more extensively.

There are three models that must be instantiated at development time: (i)
Ontology model; (ii) Feature model; and (iii) Preferences Definition model. The
Ontology model represents the set of concepts within the domain and the re-
lationships between those concepts. The Feature model (Figure 2(b)), in turn,
allows modeling variable traits within the domain, which are later used for defin-
ing user configurations. This model incorporates the ideas of Software Product
Lines (SPLs) [4] and their feature models [5]. SPL is a new software reuse ap-
proach that aims at systematically deriving families of applications based on a
reusable infrastructure with the intention of achieving both reduced costs and
reduced time-to-market. The goal of the Feature model is to describe variation
points and variants in the system, which can be either optional or alternative, and
can be added and removed dynamically from the application. A FeatureModel
is a tree of Features. A Feature can be mandatory, optional and alternative.
Mandatory features are represented only if they are in a chain with other op-
tional and alternative features, and therefore need to be represented. Otherwise,
they will be present in the system any way. AlternativeFeatures are grouped
into FeatureGroups, which define the minimum and maximum number of al-
ternatives that can be chosen. Finally, constraints may be defined in order to
represent relationships between variations, e.g. a feature requires the presence

! http://www.omg.org/spec/UML/

NotFormula eertaces (AndFormula
luationConte; % 0.

A Propositional Logic::|| FeatureModel |*festureModel
PropositionalFormula PropositionalFormuia [-~ String |

al(EvaluationContext) : Boolean| sty f' : i
FeatureModelConfiguration

+children

+am2 TS e “arg2 . :
ations e ‘ AIT 1 % o z Feature 0." |- name: String
; i i -

ComparisonOperator | +operstor momicFormE_a_____ <parent ~ | - code:_ Sst(”'ng +p;{:§llsﬂegf—sstmes

s implicationFormulal ~ ©- o i,

s Eaiinl - literal: T ﬂ R “aroupChildren FeatureIGroup
NOT_EQUAL T max: int
LESS ! #audatoryFeaturL lAnernativeFeature‘ o B L
LESS_EQUAL 5 : - ! Il J - name: String

ExpressionAtomicFormula 7
GREATER OptionalFeature| o -*sitemstives +group 1
GREATER_EQUAL| |- value: v i S
(a) Propositional Logic (b) Feature Model
«enumerations D eneemes AllowedPreferences *domains | RatingDomain 1 EnumerationDomain
PreferenceType 0= =
; B enumeration: Enumeration

#enum» ‘V\
ORDER 2 z
MIN_MAX ContinuousDomain

REFERENCE_VALUE y DiscreteDomain | | y
5 EnumerationAllowedPreferences PropertyAllowedPrefereces lower: float
DONT_CARE lower- int upper: float
CONSTRAINT e
upper: int
ValueDomainAllowedPreferences| ClassAllowedPrefereces MuitiplicityElement
+propery TypedElement
+y5|u5mm5in\lﬂ Sermmmenmtion’ |1 ﬁms\[ﬂ o 1|UML Metamodel::Property
NamedElement DatsType DataType Tipe +oppeosite - default: String
+ownedValus g - isComposite: boolean

Value | ValueDomain UML Metamodel:] | UML Metamodel::Class | +ozss =

medattibute _ jsDerived: boolean

+domain Enumeration - 0.1
isAbstract: boolean

(c) Preferences Definition Metamodel

Contraint =2 Condition | =" Preference wenumerations
OptimizationType
l
mcnsnamtrypsl% wenums
\1[1 1 MAXIMIZATION|
wenumerations MINIMIZATION
ConstraintType RatingPreference OrderPreference | DontCarePreference
+ype| 1
wenums - value: ValueSpecification| |- strict: boolean
POSITIVE
NEGATIVE MaxMinPreference|

Referenc e +target | +pref +praf2
11 1
(]

referenceValue: ValueSpecification

+arget ._[PTeferenceTarge Sargets

1 +target

EnumerationValuePreferenceTarget| 3
ations
ComparisonOperator | | - target: EnumerationLiteral $
" i ValuePreferenceTarget

HENUM: ClassPreferenceTarget] PropertyPreferenceTarget - target: Value
EQUAL +operator

NOT_EGQUAL - target: Class - target: Property
LESS ' — Suessor PEIENN/0.1
LESS_EQUAL ﬁ} R

GREATER PropertyValuePreferenceTarget]
GREATER EQUAL||- value: ValueSpecification

LeafPropertyPreferenceTarg et| |N eastedPropertyPreferenceTarg el{
I] I]

(d) Preferences Metamodel

Fig. 2. User Metamodel.

of another. These constraints are expressed as PropositionalFormulas, shown
in Figure 2(a).

The goal of our metamodel is to allow users not only to customize their appli-
cations with selected features, as in a SPL, but also to capture users’ preferences
in order for automated customized agents to act appropriately on their behalf.
The Preferences Definition model defines restrictions over preferences that users
can express. Its metamodel is presented in Figure 2(c). The purpose of this model
is to define how users can express their preferences and about which elements
of the Ontology Model. Even though it is desirable that users be able to ex-
press preferences in different ways, it is necessary to have agents that can deal
with them. For instance, if application agents can deal only with quantitative
preference statements, user preferences expressed in a qualitative way will have
no effect on the system behavior if there is no mechanism to translate them to
quantitative statements.

Users can express different types of preference: (i) Order (ORDER) — expresses
an order relation between two elements, allowing users to express “I prefer trains
to airplanes.” A set of instances of the Order preference comprises a partial or-
der; (ii) Reference Value (REFERENCE_VALUE) — enables users to indicate one or
more preferred values for an element. It can be interpreted as the user pref-
erence is a value on the order of the provided value; (iii) Minimize/Maximaze
(MIN_MAX) — indicates that the user preference is to minimize or maximize a cer-
tain element; (iv) Don’t Care (DONT_CARE) — it allows indicating a set of elements
that users do not care about. It is useful for users to express “I don’t care if I
travel with company A, B or C;” (v) Rating — allows users rating an element.
By defining a RatingDomain for an element, users can rate this element with
a value that belongs to the specified domain. This domain can be numeric (ei-
ther continuous or discrete), with specified upper and lower bounds. In addition,
an enumeration can be specified, e.g. LOVE, LIKE, INDIFFERENT, DISLIKE
and HATE. Moreover, different domains can be specified for the same element.
Using Rating preferences, it is possible to assign utility values to elements, or to
express preference statements; and (vi) Constraint (CONSTRAINT) — a particular
preference type that establishes a hard constraint over decisions, as opposed to
the other preference types, used to specify soft constraints. Constraints allows
users to express strong statements, e.g. “I don’t travel with company D.”

Different kinds of preferences may be used by agents in different ways, ac-
cording to the approaches they are using to reason about preferences. If an agent
uses utility functions and the user defines that the storage capacity of a computer
must be maximized and provides a reference value «, the agent may choose a
utility function like f(z) = {/x.

For defining the allowed preference types, developers must create instances
of AllowedPreferences, and make the corresponding associations with types
and domains. The specializations of AllowedPreferences characterize differ-
ent element types that can be used in preference statements. There are four
different possibilities: classes (I prefer notebook to desktop), properties (The
notebook weight is an essential characteristic for me) and their values (I don’t

like notebooks whose color is pink), enumeration literals (I prefer red to blue)
and values (Cost is more relevant than quality). Value is a first-class abstrac-
tion that we use to model high-level user preferences. Values are essential when
using a value-focused thinking [6]: “Values are what we care about. As such,
values should be the driving force for our decision making. They should be the
basis for the time and effort we spend thinking about decisions.” A scenario that
illustrates the use of values is in the travel domain. A user may have comfort
(a value) as a preference when choosing a transportation, instead of specifying
fine-grained preferences, such as trains are preferred to airplanes, but traveling
in an airplane first-class is better than by train, and so on. In this case, the user
agent is a domain expert that knows what comfort means.

Based on these three instantiated models and on our Preferences metamodel
(Figure 2(d)), it is possible to build a User Model to model preferences and con-
figurations. It is composed of two parts: (i) Configuration model; and (ii) Pref-
erences model. As discussed above, in the Configuration model, users choose op-
tional and alternative features (variation points) from the Feature model, defin-
ing their configurations, which are instance of the FeatureModelConfiguration.
Therefore, a configuration is a valid set of selected optional and alternative fea-
tures of a FeatureModel. On the other hand, in the Preferences model, users
define a set of preferences and a set of constraints. These are more closely re-
lated to a cognitive model of the user. User preferences (or soft constraints)
determine what the user prefers, and indirectly how the system should behave.
If the preferred behavior is not possible, the system may move to other accept-
able alternatives. Constraints, in turn, are restrictions (hard constraints) over
elements. As opposed to preferences, they directly define mandatory or forbidden
choices that must be respected by the system.

Figure 2(d) shows the Constraint element and five different specializa-
tions of Preference that represent the different preference types previously
introduced. Constraints are expressed in propositional logic formulae, however
using only —, A and V logical operators. Atomic formulae refer to the same
types of elements of preferences and can use comparison operators (=, #, >,
>, <, <) between properties and their values. The PreferenceTarget and its
subtypes are used to specify the element that is the target of the preference
statement or formula. In addition, it allows to specify nested properties, such
us Flight.arrivalAirport.location. country. If we have directly associated
preferences to classes, properties, enumerations and values, either we would
have to make specializations of each preference type to each element type or
to change the UML metamodel to make a common superclass of classes, proper-
ties, enumerations and values. Given that we did not want to modify the UML
metamodel, but only to extend it, and the first solution would generate four
specializations for each preference type, we used the PreferenceTarget as an
indirection for elements that are referred in preferences and constraints.

Besides defining preferences and constraints, users can specify conditions,
also expressed in propositional logic formulae (Figure 2(a)), to define contexts
in which preferences and constraints hold. Furthermore, in order to guarantee

that users produce valid instances of the metamodel, we have defined additional
constraints over instantiated models, e.g. in a nested property, the child of a
property whose class is X must also be a property of Class X.

3 A Two-level Software Architecture for Building
Personal Assistance Software

The main contribution of this paper is the user metamodel described previously.
However, we also present a software architecture that provides a structure of
modules and incorporates the idea of a high-level user model. This software ar-
chitecture addresses the domain of personal assistance software. The structure of
this architecture aims at building systems composed of personalized user agents
which are adapted based on user models, which can be instantiated and modified
by end-users.

The goal of the proposed architecture is to accommodate a high-level user
model, but also to allow building high quality personal assistance software by
taking into account good software engineering practices. User customizations
may be seen as a concern in a system that is spread all over the code. How-
ever, at the same time, each customization is associated with different services
(also concerns) provided to users. Therefore, when developing such system one
has to choose the dimension in which the software architecture will be modular-
ized: in terms of services (Figure 3(a)) or modularizing user settings in a single
model (Figure 3(b)). It can be seen that it is not possible in either approach to
modularize concerns in single modules. In addition, without modularizing user
customizations, as in Figure 3(a), they are buried inside the code, thus making
it difficult to understand them as a whole.

Moreover, user preferences play different roles in agent architectures [7, 8]. We
illustrate examples of these roles in Table 1. If all this information is contained in
a single user model, we have the problems discussed above and this model would
aggregate information related to different concerns of the system (low cohesion
among user model elements).

Our solution is to provide a wvirtual separation of concerns [9]. A concern is
anything that is interesting from the point of view of a stakeholder. In our case,
the concern that will be virtually modularized is the user model. The main idea
is to structure the user agent architecture in terms of services by modularizing

(a) Modularizing Services (b) Modularizing User Model (c) Our approach

service I I Jsemvieed]] <A
P A\ \ | Trace Links amn
service 2] Service 2l][o /N | mwisin s
s — — _ —
. . K y ’__‘
Service 3 Service 3 (/® \ *”7\ .

X /
User Model 4 ’

//
] (‘/

k.
o
i Ve .
T UserAgent ——— Service

Fig. 3. Modularization Approaches.

Attitude |Example

Goal I want to drink red wine.

Belief I like red wine.

Motivation|Red wine is good for the heart.

Plan In order to drink red wine either I go to the supermarket and buy a

bottle (plan A) or I go to my friend’s home who always have wine
there (plan B).

Meta-goal |I want to drink red wine, but spending less money as possible (so I
might choose plan B).

Table 1. User Preferences and their roles into agent architectures.

its variability as much as possible into agent abstractions. We provide a virtual
modularized view of user customizations, as Figure 3(c) illustrates. Customiza-
tions are not design abstractions, but they are implemented by typical agent
abstractions (goals, plans, etc.), i.e. they play their specific roles in the agent ar-
chitecture. The virtual user model is a complementary view that provides a global
view of user customizations. This model uses a high-level end-user language, and
users are able to configure their agents by means of this model. Using a high-level
user model to drive adaptations on personal assistance software brings the main
following advantages: (i) user customizations are implementation-independent;
(ii) the vocabulary used in the user model becomes a common language for
users specifying configurations and preference; (iii) the user model modularizes
customizations, allowing a modular reasoning about them.

3.1 Detailing our Software Architecture

In this section we detail our proposed architecture, depicted in Figure 4, and de-
scribe the mechanism that makes the high-level user model (henceforth referred
to as user model) work with agent architectures.

G%% ‘L User

.4
‘Configurationu Learning “ Applications Interface

; | User Model
Ampaton|| Svnchronizer

User Agents .

Remote - User
{ Services ; Agents

Aunoag

Fig. 4. Proposed Architecture.

The User Agents module consists of agents that provide different services
for users, e.g. scheduling and trip planning. Their architecture supports variabil-
ity related to different users, and provides mechanisms to reason about prefer-
ences. We propose to adopt an agent-based approach to design and implement
user-customizable systems for several reasons: (i) agent-based architectures are
composed of human-inspired components, such as goals, beliefs and motivations,
thus reducing the gap between the user model (problem space) and the solution
space; (ii) plenty of agent-based AI techniques have been proposed to reason
about user preferences, and they can be leveraged to build personalized user
agents; and (iii) agent architectures are very flexible, thus facilitating the imple-
mentation of user customizations. For instance, there is an explicit separation
between what to do (goals) and how to do it (plans).

User Agents use services provided by a distributed environment (the Ser-
vices cloud), and their knowledge is based on the Domain Model, composed of
entities shared by user agents and services, application-specific, etc. The Se-
curity module addresses security and privacy issues, because user agents may
share information with other user agents. This module aggregates policies that
restrict this communication, assuring that confidential information is kept safely
secured. Users access services provided by user agents through the Applications
Interface module.

The User Model contains user configurations and preferences expressed in
a high-level language. They are present in the user agents architecture but as
design-level abstractions. By means of the Configuration module, users can di-
rectly manipulate the User Model, which gives them the power to control and
dynamically modify user agents, using a high-level language. In addition, changes
in the User Model may be performed or suggested by the Learning module, which
monitors user actions to infer possible changes in the User Model. This module
has a degree of autonomy parameter, so it may automatically change the User
Model, or just suggest changes to it, to be approved by the end users.

The User Model and User Agents are connected by representing user cus-
tomization in two different levels of abstraction. This connection is stored in the
form of trace links, indicating how and where a customization is implemented
in a user agent(s). Adaptations are performed at runtime and are accomplished
based on the trace links between the User Model and the User Agents architec-
ture. The Synchronizer is the module in charge of adapting User Agents based
on changes in the User Model. Tt is able to understand these trace links, and
it knows which transformation must be performed in the User Agents based on
changes in the User Model. Therefore, the User Model drives adaptations in the
User Agents.

The algorithm we define to be performed by the Synchronizer module is
presented in Algorithm 1. It receives as input a previous and an updated versions
of a user model, as well as a map containing rules that states which set of actions
must be performed when an event (a change) on the user model occurs. The
algorithm first calculates the set of events (changes) between the two versions of
the user model (line 1). Next, for each event, it gets the set of rules that “listen”

to the event (line 2-6). The result is the set of rules that produce actions for the
event set. Then, it is retrieved, from each rule, the set of actions (changes) that
must be performed at the implementation level of the system (lines 7-9), so that
it turns to be consistent with the updated version of the user model. Finally, all
actions are performed (lines 10-11).

Algorithm 1: Adaptation algorithm

Input: UM: previous user model; UM': updated user model; rulesM ap:
adaptation rules mapped to the events they observe

events = diff(UM, UM");
adaptation Rules = (;
foreach FEvent e € events do

rules = e.get(rulesMap);

if rules # null then

L adaptation Rules = adaptation Rules U rules;

S Uk W N

<~

actions = {;
foreach Rule r € adaptationRules do
9 L actions = actionsU r.getAdaptationActions(UM, UM’, events);

®

10 foreach Action a € actions do
11 L a.doAction();

Examples of actions are the addition or removal of agents, beliefs, goals
and plans. Events are the (de)selection of features or addition or removal of a
preference over a certain element. And rules associate events with actions.

4 Instantiating our User Metamodel for Different
Application Domains

Our metamodel was built using preference statements collected from different
individuals in a user study and from papers related to user preferences. The idea
was to contemplate the different kinds of preference statements in order to max-
imize the users’ expressiveness. The metamodel uses abstractions from the user
preferences domain, therefore the language is built as an end-user language. This
section presents two Preferences models to show that our metamodel is generic
enough to model different kinds of preferences statements in different domains
— flight reservation and computer purchase domains. Given that these are two
well-known domains, we assume that the reader is familiar with them, and due
to space restrictions, we present only the Preferences models. In addition, we
assume that the Preferences Definition model defines that all preference types
over all elements are allowed.

The first Preference model, which is from the flight domain, indicates where
a user prefers to sit inside an airplane. This model consists of three order prefer-
ences, two of them with conditions, and one minimization preference. Next, we
present the four modeled preference statements in natural language, and Figure 5
shows how they are modeled with our metamodel abstractions.

P1. If the flight is short, i.e. its duration does not exceed 4 hours, I prefer a seat
by the aisle to a seat by the window.

P2. If the flight is long, i.e. its duration is higher than 4 hours, I prefer a seat
by the window to a seat by the aisle.

P3. I always prefer to sit at the first rows of the airplane.

P4. Sitting at the first rows of the airplane is more important to me than the
seat location.

DurationL EQ4 -AtomicFormulal FlightDuration - DurationGT4 :AtomicFormula
operator = LESS_EQUAL LeafProperyFreferenceTanget cparstor = GREATER
valus =4 target = Flight.duration valus =4

+pref2 SeatLocationWindow +prefl
Proy ValuePreferenceTarget,
value = WINDOW
ShortFlight | +cendition | AisleGTWindow - target = Seat location WindowGTAisle : |+condition| LongFlight :
Condition OrderPreference OrderPreference Condition
strict = true SeatlocationAisle : strict = true
Proj ValuePreferenceTarget
+prefl +pref2
value = AISLE
target = Sest location
SeatLocation : +prefi | LocationXRow : | +pref2 SeatRow : 13138t |MinRow :MaxMinPreference)
LeafPropertyPreferenceTarget OrderPreference [~ | eafPropertyPreferenceTarget
P type = MINIMIZATION
target = Seat location strict = true target = Seatrow

Fig. 5. User Preferences model in Flight Domain.

The computer domain Preferences model presented in Figure 6 has some el-
ements in gray color. They are not part of the Preferences model, but from the
Domain model, but we included them in Figure 6 to present some application-
specific concepts used in this model. First, four values are defined in the Com-
puter Domain (mobility, readability, performance and cost). These values can
be rated with “+”, ranging from one to five. These are the natural language
preference statements modeled in Figure 6:

P1. Cost is the most important value (+++++).
P2. I rate performance with ++++.

P3. I rate readability with ++++.

P4. I rate mobility with ++.

P5. I'm expecting to pay around $800 for my laptop.
P6. I want a computer with less than 3Kg.

P7. The lighter the computer is, the better.

It is important to notice that Rating and Order preferences provide differ-
ent information. By saying that cost is +++++ and performance is ++++,
a user is informing that cost is more important than performance (order), but
performance is also important, and should be taken into account.

o : Mobility? :
T ComputerDomainPreferences : Mobility :Value MAoksls) Freteasiing 2 RatingPreference
S ValueDomainAllowedPreferences ValuePreferenceTarget s S

value = ++

sEnum: J{ d/
+ R Readabilityd -
= ReadabilityPreference : =
= Readahility :Value Fendinmnfraonce . §0
RE - ValuePrefersnceTarget RatingPreference
P - StartRateDomain : ComputerDomain : valug =+++=
_____ EnumerationDomain ValueDomain

Performanced -
RatingPreference

value = +5++

PerformancePreference : é

et e D e ValuePreferenceTarget

NotebookWeightLES :
Weightl imit :Contraint AtomicFormula

. Cost5 :
constraintType = POSITIVE] value =3 r CostPreference :
operstor = LESS sk N Skie: ValuePrefersnceTarget "= RatingPreference
valug = -+
MinV/eight NotebookWleight : NotebookPrice : PriceAround :
e LeafProj PreferenceTarget LeafPropertyPreferenceTarget ReferenceValuePreference
e = MINHIZATION target = Motebook.weight target = Notebook price referencealus = 800

Fig. 6. User Preferences model in Computer Domain.

5 Related Work

Several approaches have been proposed to deal with user preferences. To build
our metamodel, we have conducted extensive research on which kinds of prefer-
ences other proposals represent and additional concepts they define. Typically,
preferences are classified as quantitative or qualitative (e.g. “I love summer”
versus “I like winter more than summer”). Both approaches can be represented
through our metamodel. Quantitative preferences are modeled in the framework
proposed in [10] by means of a preference function that maps records to a score
from 0 to 1. On the other hand, CP-Nets [11] models qualitative preferences. CP-
Nets also allow modeling conditionality, which is considered in our work as well.
The concept of normality is defined in [12], so that users can express preferences
considering normal states of the world, but these preferences may change when
the world changes. The normality abstraction can be modeled using conditions
in our metamodel.

Ayres & Furtado proposed the OWLPref [13], a declarative and domain-
independent preference representation in OWL. This work has the same purpose
of our work in the sense that it generically models user preferences. However,
OWLPref does not precisely define the preferences model, e.g. lacking the def-
inition of associations, it shows only a hierarchical structure of preferences. A
preference metamodel is also proposed in [14]. However, its expressiveness is very
limited. It only allows to define desired values (or intervals) of object properties.

One of the biggest projects in the context of personalized user agents is
the Cognitive Assistant that Learns and Organizes (CALO) project? [15,16],
whose goal is to support a busy knowledge worker in dealing with the twin
problems of information and task overload. Along the project, the research effort
was mostly concentrated in the PTIME agent, which is an autonomous entity
that works with its user, other PTIME agents, and other users, to schedule
meetings and commitments in its user’s calendar. Users are able to express their

% http://caloproject.sri.com/

preferences, nevertheless the adopted language is tight to application domain
(meeting scheduling). Despite this limitation, the CALO project substantially
advanced on the development of user agents, also taking into account human-
computer interaction (HCI) issues that are essential for improving the chances
of users adopting personal agents. Therefore, lessons learned from this project
[16] can be leveraged in our work.

6 Conclusion

With the growth of the Internet, interactivity and access to information are sig-
nificantly increasing. At the same time, several of our everyday-tasks are being
managed by software applications, such as to-do lists and schedules. The com-
bination of these trends converge to the automation of user tasks performed by
agents that act on behalf of users. Agents must have reliable user models that
assure they act appropriately, otherwise they will not be trusted by users.

In order to increase users’ trust on personal assistance software based on au-
tomated agents, we proposed in this paper the idea of exposing high-level user
models to users so that they can verify and understand this model as well as
control it by configuring it and making fine-grained modifications. Our proposal
is a domain-specific metamodel that provides abstractions from the user domain,
including configurations, constraints and preferences. Different abstractions used
by end users in natural language statements are directly represented. Users are
able to tailor personal assistance software systems with optional and alternative
features, and model their preferences. Besides (hard-)constraints, five different
preferences types (soft-constraints) can be represented: order, rating, reference
value, maximization/minimization and don’t care. In addition, we adopt values
as a first-class abstraction to model high-level preferences. Instances of our meta-
model are to be used in combination with our proposed software architecture,
which uses them as a global view of user customizations. Services are provided
by user agents structured with traditional agent-based architectures. The User
Model provides a modularized view of different user-related concepts spread
into agent architectures. We also presented an algorithm to be performed by the
Synchronizer module, which ensures that changes in the User Model demands
appropriate adaptations in user agents.

We are currently working in several directions. First, we made a survey of
preference statements provided by user in order to build a language based on
our metamodel using syntactic sugar. In addition, we are investigating how to
verify the User Model to identify inconsistencies across preferences. Finally, we
are implementing a framework based on our software architecture to provide a
solid infrastructure to build personal assistance software systems.

Acknowledgements

This work has been partially supported by CNPq 557.128/2009-9 and FAPER.J]
E-26/170028/2008. It is related to the following topics: Software technologies

for web applications - A Multi-Agent Systems Approach for Developing Auto-
nomic Web Applications - G1. Design techniques to improve the development
of autonomic Web applications. Ingrid Nunes #141278/2009-9, Simone Barbosa
#313031/2009-6, Carlos Lucena #304810/2009-6 also thank CNPq for respec-
tive research grants.

References

10.

11.

12.

13.

14.

15.

16.

Weiss, G., ed.: Multiagent systems: a modern approach to distributed artificial
intelligence. MIT Press, Cambridge, MA, USA (1999)

. Maes, P.: Agents that reduce work and information overload. Commun. ACM

37(7) (1994) 30-40

Schiaffino, S., Amandi, A.: User - interface agent interaction: personalization issues.
Int. J. Hum.-Comput. Stud. 60(1) (2004) 129-148

Pohl, K., Bockle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag (2005)

Kang, K., Cohen, S., Hess, J., Novak, W., Peterson: Feature-oriented domain
analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-021, SEI
(1990)

Keeney, R.L.: Value-focused thinking — A Path to Creative Decisionmaking. Har-
vard University Press, London, England (1944)

Doyle, J.: Prospects for preferences. Computational Intelligence 20 (2004) 111-136
Nunes, 1., Barbosa, S., Lucena, C.: Modeling user preferences into agent architec-
tures: a survey. Technical Report 25/09, PUC-Rio, Brazil (September 2009)
Kastner, C., Apel, S.: Virtual separation of concerns - a second chance for prepro-
cessors. Journal of Object Technology 8(6) (2009) 59-78

Agrawal, R., Wimmers, E.L.: A framework for expressing and combining prefer-
ences. In: 2000 ACM SIGMOD. (2000) 297-306

Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Cp-nets: A tool for representing
and reasoning with conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research 21 (2004) 135-191

Lang, J., van der Torre, L.: From belief change to preference change. In: ECAI
2008, The Netherlands, IOS Press (2008) 351-355

Ayres, L., Furtado, V.: Owlpref: Uma representacdo declarativa de preferéncias
para web seméantica. In: XXVII Congresso da SBC, Brazil (2007) 1411-1419
Tapucu, D., Can, O., Bursa, O., Unalir, M.O.: Metamodeling approach to prefer-
ence management in the semantic web. In: M-PREF 2008, USA (2008) 116-123
Berry, P., Peintner, B., Conley, K., Gervasio, M., Uribe, T., Yorke-Smith, N.: De-
ploying a personalized time management agent. In: AAMAS ’06. (2006) 1564-1571
Berry, P.M., Donneau-Golencer, T., Duong, K., Gervasio, M., Peintner, B., Yorke-
Smith, N.: Evaluating user-adaptive systems: Lessons from experiences with a
personalized meeting scheduling assistant. In: TAAT’09. (2009) 40-46

